Optimal. Leaf size=22 \[ e^x \left (2 x-4 x (2+x)-\frac {4}{\log (3)}\right ) \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.41, antiderivative size = 74, normalized size of antiderivative = 3.36, number of steps used = 18, number of rules used = 9, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.112, Rules used = {12, 1586, 6742, 2199, 2178, 2176, 2194, 2196, 2554} \begin {gather*} -\frac {2 e^x x^2 \log (9) \log (x)}{\log (3)}-14 e^x x \log (x)+\frac {4 e^x x \log (9) \log (x)}{\log (3)}+14 e^x \log (x)-\frac {2 e^x (2+\log (27)) \log (x)}{\log (3)}-\frac {4 e^x \log (9) \log (x)}{\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1586
Rule 2176
Rule 2178
Rule 2194
Rule 2196
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^x \left (-4+\left (-6 x-4 x^2\right ) \log (3)\right ) \left (2+\left (3 x+2 x^2\right ) \log (3)+\left (2 x+\left (3 x+7 x^2+2 x^3\right ) \log (3)\right ) \log (x)\right )}{2 x+\left (3 x^2+2 x^3\right ) \log (3)} \, dx}{\log (3)}\\ &=\frac {\int -\frac {2 e^x \left (2+\left (3 x+2 x^2\right ) \log (3)+\left (2 x+\left (3 x+7 x^2+2 x^3\right ) \log (3)\right ) \log (x)\right )}{x} \, dx}{\log (3)}\\ &=-\frac {2 \int \frac {e^x \left (2+\left (3 x+2 x^2\right ) \log (3)+\left (2 x+\left (3 x+7 x^2+2 x^3\right ) \log (3)\right ) \log (x)\right )}{x} \, dx}{\log (3)}\\ &=-\frac {2 \int \left (\frac {e^x \left (2+x^2 \log (9)+x \log (27)\right )}{x}+e^x \left (2+7 x \log (3)+x^2 \log (9)+\log (27)\right ) \log (x)\right ) \, dx}{\log (3)}\\ &=-\frac {2 \int \frac {e^x \left (2+x^2 \log (9)+x \log (27)\right )}{x} \, dx}{\log (3)}-\frac {2 \int e^x \left (2+7 x \log (3)+x^2 \log (9)+\log (27)\right ) \log (x) \, dx}{\log (3)}\\ &=14 e^x \log (x)-14 e^x x \log (x)-\frac {4 e^x \log (9) \log (x)}{\log (3)}+\frac {4 e^x x \log (9) \log (x)}{\log (3)}-\frac {2 e^x x^2 \log (9) \log (x)}{\log (3)}-\frac {2 e^x (2+\log (27)) \log (x)}{\log (3)}-\frac {2 \int \left (\frac {2 e^x}{x}+e^x x \log (9)+e^x \log (27)\right ) \, dx}{\log (3)}+\frac {2 \int \frac {e^x \left (2+x^2 \log (9)+x \log (27)\right )}{x} \, dx}{\log (3)}\\ &=14 e^x \log (x)-14 e^x x \log (x)-\frac {4 e^x \log (9) \log (x)}{\log (3)}+\frac {4 e^x x \log (9) \log (x)}{\log (3)}-\frac {2 e^x x^2 \log (9) \log (x)}{\log (3)}-\frac {2 e^x (2+\log (27)) \log (x)}{\log (3)}+\frac {2 \int \left (\frac {2 e^x}{x}+e^x x \log (9)+e^x \log (27)\right ) \, dx}{\log (3)}-\frac {4 \int \frac {e^x}{x} \, dx}{\log (3)}-\frac {(2 \log (9)) \int e^x x \, dx}{\log (3)}-\frac {(2 \log (27)) \int e^x \, dx}{\log (3)}\\ &=-\frac {4 \text {Ei}(x)}{\log (3)}-\frac {2 e^x x \log (9)}{\log (3)}-\frac {2 e^x \log (27)}{\log (3)}+14 e^x \log (x)-14 e^x x \log (x)-\frac {4 e^x \log (9) \log (x)}{\log (3)}+\frac {4 e^x x \log (9) \log (x)}{\log (3)}-\frac {2 e^x x^2 \log (9) \log (x)}{\log (3)}-\frac {2 e^x (2+\log (27)) \log (x)}{\log (3)}+\frac {4 \int \frac {e^x}{x} \, dx}{\log (3)}+\frac {(2 \log (9)) \int e^x \, dx}{\log (3)}+\frac {(2 \log (9)) \int e^x x \, dx}{\log (3)}+\frac {(2 \log (27)) \int e^x \, dx}{\log (3)}\\ &=\frac {2 e^x \log (9)}{\log (3)}+14 e^x \log (x)-14 e^x x \log (x)-\frac {4 e^x \log (9) \log (x)}{\log (3)}+\frac {4 e^x x \log (9) \log (x)}{\log (3)}-\frac {2 e^x x^2 \log (9) \log (x)}{\log (3)}-\frac {2 e^x (2+\log (27)) \log (x)}{\log (3)}-\frac {(2 \log (9)) \int e^x \, dx}{\log (3)}\\ &=14 e^x \log (x)-14 e^x x \log (x)-\frac {4 e^x \log (9) \log (x)}{\log (3)}+\frac {4 e^x x \log (9) \log (x)}{\log (3)}-\frac {2 e^x x^2 \log (9) \log (x)}{\log (3)}-\frac {2 e^x (2+\log (27)) \log (x)}{\log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 23, normalized size = 1.05 \begin {gather*} -\frac {2 e^x \left (2+x^2 \log (9)+x \log (27)\right ) \log (x)}{\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 26, normalized size = 1.18 \begin {gather*} e^{\left (x + \log \left (-\frac {2 \, {\left ({\left (2 \, x^{2} + 3 \, x\right )} \log \relax (3) + 2\right )} \log \relax (x)}{\log \relax (3)}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 33, normalized size = 1.50 \begin {gather*} -\frac {2 \, {\left (2 \, x^{2} e^{x} \log \relax (3) \log \relax (x) + 3 \, x e^{x} \log \relax (3) \log \relax (x) + 2 \, e^{x} \log \relax (x)\right )}}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.11, size = 186, normalized size = 8.45
method | result | size |
risch | \(-\frac {4 \left (1+\left (x^{2}+\frac {3}{2} x \right ) \ln \relax (3)\right ) \ln \relax (x ) {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (1+\left (x^{2}+\frac {3}{2} x \right ) \ln \relax (3)\right )\right )^{3}}{2}+\frac {i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (1+\left (x^{2}+\frac {3}{2} x \right ) \ln \relax (3)\right )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )\right )}{2}+\frac {i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (1+\left (x^{2}+\frac {3}{2} x \right ) \ln \relax (3)\right )\right )^{2} \mathrm {csgn}\left (i \left (1+\left (x^{2}+\frac {3}{2} x \right ) \ln \relax (3)\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i \ln \relax (x ) \left (1+\left (x^{2}+\frac {3}{2} x \right ) \ln \relax (3)\right )\right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \left (1+\left (x^{2}+\frac {3}{2} x \right ) \ln \relax (3)\right )\right )}{2}-i \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (1+\left (x^{2}+\frac {3}{2} x \right ) \ln \relax (3)\right )\right )^{2}+x}}{\ln \relax (3)}\) | \(186\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 24, normalized size = 1.09 \begin {gather*} -\frac {2 \, {\left (2 \, x^{2} \log \relax (3) + 3 \, x \log \relax (3) + 2\right )} e^{x} \log \relax (x)}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.18, size = 24, normalized size = 1.09 \begin {gather*} -\frac {2\,{\mathrm {e}}^x\,\ln \relax (x)\,\left (2\,\ln \relax (3)\,x^2+3\,\ln \relax (3)\,x+2\right )}{\ln \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 34, normalized size = 1.55 \begin {gather*} \frac {\left (- 4 x^{2} \log {\relax (3 )} \log {\relax (x )} - 6 x \log {\relax (3 )} \log {\relax (x )} - 4 \log {\relax (x )}\right ) e^{x}}{\log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________