Optimal. Leaf size=33 \[ 7-e^{e^{5/x}} \left (2-\frac {e^{-2+e^x+2 x}}{x}\right )-x \]
________________________________________________________________________________________
Rubi [F] time = 1.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 e^{e^{5/x}+\frac {5}{x}} x-x^3+e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2+e^x x^2\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{-2+e^{5/x}+e^x+3 x}}{x}-\frac {-10 e^{e^{5/x}+\frac {5}{x}}+x^2}{x^2}+\frac {e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2\right )}{x^3}\right ) \, dx\\ &=\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx-\int \frac {-10 e^{e^{5/x}+\frac {5}{x}}+x^2}{x^2} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+2 x} \left (-5 e^{5/x}-x+2 x^2\right )}{x^3} \, dx\\ &=-\int \left (1-\frac {10 e^{e^{5/x}+\frac {5}{x}}}{x^2}\right ) \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx+\int \left (-\frac {5 e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3}+\frac {e^{-2+e^{5/x}+e^x+2 x} (-1+2 x)}{x^2}\right ) \, dx\\ &=-x-5 \int \frac {e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3} \, dx+10 \int \frac {e^{e^{5/x}+\frac {5}{x}}}{x^2} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+2 x} (-1+2 x)}{x^2} \, dx\\ &=-x-5 \int \frac {e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3} \, dx-10 \operatorname {Subst}\left (\int e^{e^{5 x}+5 x} \, dx,x,\frac {1}{x}\right )+\int \left (-\frac {e^{-2+e^{5/x}+e^x+2 x}}{x^2}+\frac {2 e^{-2+e^{5/x}+e^x+2 x}}{x}\right ) \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx\\ &=-x+2 \int \frac {e^{-2+e^{5/x}+e^x+2 x}}{x} \, dx-2 \operatorname {Subst}\left (\int e^x \, dx,x,e^{5/x}\right )-5 \int \frac {e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3} \, dx-\int \frac {e^{-2+e^{5/x}+e^x+2 x}}{x^2} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx\\ &=-2 e^{e^{5/x}}-x+2 \int \frac {e^{-2+e^{5/x}+e^x+2 x}}{x} \, dx-5 \int \frac {e^{-2+e^{5/x}+e^x+\frac {5}{x}+2 x}}{x^3} \, dx-\int \frac {e^{-2+e^{5/x}+e^x+2 x}}{x^2} \, dx+\int \frac {e^{-2+e^{5/x}+e^x+3 x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.63, size = 36, normalized size = 1.09 \begin {gather*} -2 e^{e^{5/x}}+\frac {e^{-2+e^{5/x}+e^x+2 x}}{x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 61, normalized size = 1.85 \begin {gather*} -\frac {{\left (x^{2} e^{\frac {5}{x}} + 2 \, x e^{\left (\frac {x e^{\frac {5}{x}} + 5}{x}\right )} - e^{\left (2 \, x + \frac {5}{x} + e^{x} + e^{\frac {5}{x}} - 2\right )}\right )} e^{\left (-\frac {5}{x}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 69, normalized size = 2.09 \begin {gather*} -\frac {{\left (x^{2} e^{\frac {5}{x}} + 2 \, x e^{\left (\frac {x e^{\frac {5}{x}} + 5}{x}\right )} - e^{\left (\frac {2 \, x^{2} + x e^{x} + x e^{\frac {5}{x}} - 2 \, x + 5}{x}\right )}\right )} e^{\left (-\frac {5}{x}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 32, normalized size = 0.97
method | result | size |
risch | \(-x -2 \,{\mathrm e}^{{\mathrm e}^{\frac {5}{x}}}+\frac {{\mathrm e}^{{\mathrm e}^{\frac {5}{x}}+{\mathrm e}^{x}+2 x -2}}{x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 31, normalized size = 0.94 \begin {gather*} -x + \frac {e^{\left (2 \, x + e^{x} + e^{\frac {5}{x}} - 2\right )}}{x} - 2 \, e^{\left (e^{\frac {5}{x}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 30, normalized size = 0.91 \begin {gather*} -x-\frac {{\mathrm {e}}^{{\mathrm {e}}^{5/x}}\,\left (2\,x-{\mathrm {e}}^{2\,x+{\mathrm {e}}^x-2}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 27, normalized size = 0.82 \begin {gather*} - x - 2 e^{e^{\frac {5}{x}}} + \frac {e^{2 x + e^{x} - 2} e^{e^{\frac {5}{x}}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________