Optimal. Leaf size=26 \[ -\left (\left (-9+\frac {e^3}{x}\right ) x\right )+\frac {\left (1+e^4\right ) x^2}{\log ^2(x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 17, normalized size of antiderivative = 0.65, number of steps used = 10, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {6, 6742, 2306, 2309, 2178} \begin {gather*} \frac {\left (1+e^4\right ) x^2}{\log ^2(x)}+9 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2178
Rule 2306
Rule 2309
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-2-2 e^4\right ) x+\left (2 x+2 e^4 x\right ) \log (x)+9 \log ^3(x)}{\log ^3(x)} \, dx\\ &=\int \left (9-\frac {2 \left (1+e^4\right ) x}{\log ^3(x)}+\frac {2 \left (1+e^4\right ) x}{\log ^2(x)}\right ) \, dx\\ &=9 x-\left (2 \left (1+e^4\right )\right ) \int \frac {x}{\log ^3(x)} \, dx+\left (2 \left (1+e^4\right )\right ) \int \frac {x}{\log ^2(x)} \, dx\\ &=9 x+\frac {\left (1+e^4\right ) x^2}{\log ^2(x)}-\frac {2 \left (1+e^4\right ) x^2}{\log (x)}-\left (2 \left (1+e^4\right )\right ) \int \frac {x}{\log ^2(x)} \, dx+\left (4 \left (1+e^4\right )\right ) \int \frac {x}{\log (x)} \, dx\\ &=9 x+\frac {\left (1+e^4\right ) x^2}{\log ^2(x)}-\left (4 \left (1+e^4\right )\right ) \int \frac {x}{\log (x)} \, dx+\left (4 \left (1+e^4\right )\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=9 x+4 \left (1+e^4\right ) \text {Ei}(2 \log (x))+\frac {\left (1+e^4\right ) x^2}{\log ^2(x)}-\left (4 \left (1+e^4\right )\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=9 x+\frac {\left (1+e^4\right ) x^2}{\log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.88 \begin {gather*} 9 x+\frac {x^2}{\log ^2(x)}+\frac {e^4 x^2}{\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^{2} e^{4} + 9 \, x \log \relax (x)^{2} + x^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 22, normalized size = 0.85 \begin {gather*} 9 \, x + \frac {x^{2} e^{4}}{\log \relax (x)^{2}} + \frac {x^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.65
method | result | size |
risch | \(9 x +\frac {\left ({\mathrm e}^{4}+1\right ) x^{2}}{\ln \relax (x )^{2}}\) | \(17\) |
norman | \(\frac {\left ({\mathrm e}^{4}+1\right ) x^{2}+9 x \ln \relax (x )^{2}}{\ln \relax (x )^{2}}\) | \(22\) |
default | \(9 x +2 \,{\mathrm e}^{4} \left (-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )-2 \,{\mathrm e}^{4} \left (-\frac {x^{2}}{2 \ln \relax (x )^{2}}-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )+\frac {x^{2}}{\ln \relax (x )^{2}}\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.58, size = 40, normalized size = 1.54 \begin {gather*} 4 \, e^{4} \Gamma \left (-1, -2 \, \log \relax (x)\right ) + 8 \, e^{4} \Gamma \left (-2, -2 \, \log \relax (x)\right ) + 9 \, x + 4 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) + 8 \, \Gamma \left (-2, -2 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.95, size = 16, normalized size = 0.62 \begin {gather*} 9\,x+\frac {x^2\,\left ({\mathrm {e}}^4+1\right )}{{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 17, normalized size = 0.65 \begin {gather*} 9 x + \frac {x^{2} + x^{2} e^{4}}{\log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________