Optimal. Leaf size=25 \[ 3 e^{-\frac {16 x}{5}-\frac {2}{5} \left (e+e^4-x\right ) x}+x \]
________________________________________________________________________________________
Rubi [A] time = 1.11, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.145, Rules used = {12, 6741, 6742, 6688, 8, 2235, 2234, 2204, 2244, 2240} \begin {gather*} 3 e^{\frac {2 x^2}{5}-\frac {2}{5} \left (8+e+e^4\right ) x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 2204
Rule 2234
Rule 2235
Rule 2240
Rule 2244
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{\frac {1}{5} \left (-16 x-2 e x-2 e^4 x+2 x^2\right )} \left (-48-6 e-6 e^4+5 e^{\frac {1}{5} \left (16 x+2 e x+2 e^4 x-2 x^2\right )}+12 x\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {1}{5} x \left (-2 \left (8+e+e^4\right )+2 x\right )} \left (5 e^{\frac {1}{5} \left (16 x+2 e x+2 e^4 x-2 x^2\right )}-48 \left (1+\frac {1}{8} e \left (1+e^3\right )\right )+12 x\right ) \, dx\\ &=\frac {1}{5} \int \left (5 \exp \left (\frac {2}{5} \left (8+e+e^4-x\right ) x+\frac {1}{5} x \left (-2 \left (8+e+e^4\right )+2 x\right )\right )-6 e^{\frac {1}{5} x \left (-2 \left (8+e+e^4\right )+2 x\right )} \left (8+e+e^4\right )+12 e^{\frac {1}{5} x \left (-2 \left (8+e+e^4\right )+2 x\right )} x\right ) \, dx\\ &=\frac {12}{5} \int e^{\frac {1}{5} x \left (-2 \left (8+e+e^4\right )+2 x\right )} x \, dx-\frac {1}{5} \left (6 \left (8+e+e^4\right )\right ) \int e^{\frac {1}{5} x \left (-2 \left (8+e+e^4\right )+2 x\right )} \, dx+\int \exp \left (\frac {2}{5} \left (8+e+e^4-x\right ) x+\frac {1}{5} x \left (-2 \left (8+e+e^4\right )+2 x\right )\right ) \, dx\\ &=\frac {12}{5} \int e^{-\frac {2}{5} \left (8+e+e^4\right ) x+\frac {2 x^2}{5}} x \, dx-\frac {1}{5} \left (6 \left (8+e+e^4\right )\right ) \int e^{-\frac {2}{5} \left (8+e+e^4\right ) x+\frac {2 x^2}{5}} \, dx+\int 1 \, dx\\ &=3 e^{-\frac {2}{5} \left (8+e+e^4\right ) x+\frac {2 x^2}{5}}+x+\frac {1}{5} \left (6 \left (8+e+e^4\right )\right ) \int e^{-\frac {2}{5} \left (8+e+e^4\right ) x+\frac {2 x^2}{5}} \, dx-\frac {1}{5} \left (6 e^{-\frac {1}{10} \left (8+e+e^4\right )^2} \left (8+e+e^4\right )\right ) \int e^{\frac {5}{8} \left (-\frac {2}{5} \left (8+e+e^4\right )+\frac {4 x}{5}\right )^2} \, dx\\ &=3 e^{-\frac {2}{5} \left (8+e+e^4\right ) x+\frac {2 x^2}{5}}+x+3 e^{-\frac {1}{10} \left (8+e+e^4\right )^2} \left (8+e+e^4\right ) \sqrt {\frac {\pi }{10}} \text {erfi}\left (\frac {8+e+e^4-2 x}{\sqrt {10}}\right )+\frac {1}{5} \left (6 e^{-\frac {1}{10} \left (8+e+e^4\right )^2} \left (8+e+e^4\right )\right ) \int e^{\frac {5}{8} \left (-\frac {2}{5} \left (8+e+e^4\right )+\frac {4 x}{5}\right )^2} \, dx\\ &=3 e^{-\frac {2}{5} \left (8+e+e^4\right ) x+\frac {2 x^2}{5}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 22, normalized size = 0.88 \begin {gather*} 3 e^{\frac {2}{5} x \left (-8-e-e^4+x\right )}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 45, normalized size = 1.80 \begin {gather*} {\left (x e^{\left (-\frac {2}{5} \, x^{2} + \frac {2}{5} \, x e^{4} + \frac {2}{5} \, x e + \frac {16}{5} \, x\right )} + 3\right )} e^{\left (\frac {2}{5} \, x^{2} - \frac {2}{5} \, x e^{4} - \frac {2}{5} \, x e - \frac {16}{5} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.38, size = 179, normalized size = 7.16 \begin {gather*} \frac {3}{10} i \, \sqrt {10} \sqrt {\pi } {\left (e^{4} + e\right )} \operatorname {erf}\left (-\frac {1}{10} i \, \sqrt {10} {\left (2 \, x - e^{4} - e - 8\right )}\right ) e^{\left (-\frac {1}{10} \, e^{8} - \frac {1}{5} \, e^{5} - \frac {8}{5} \, e^{4} - \frac {1}{10} \, e^{2} - \frac {8}{5} \, e - \frac {32}{5}\right )} - \frac {3}{10} i \, \sqrt {10} \sqrt {\pi } \operatorname {erf}\left (-\frac {1}{10} i \, \sqrt {10} {\left (2 \, x - e^{4} - e - 8\right )}\right ) e^{\left (-\frac {1}{10} \, e^{8} - \frac {1}{5} \, e^{5} - \frac {8}{5} \, e^{4} - \frac {1}{10} \, e^{2} - \frac {8}{5} \, e - \frac {12}{5}\right )} - \frac {3}{10} i \, \sqrt {10} \sqrt {\pi } \operatorname {erf}\left (-\frac {1}{10} i \, \sqrt {10} {\left (2 \, x - e^{4} - e - 8\right )}\right ) e^{\left (-\frac {1}{10} \, e^{8} - \frac {1}{5} \, e^{5} - \frac {8}{5} \, e^{4} - \frac {1}{10} \, e^{2} - \frac {8}{5} \, e - \frac {27}{5}\right )} + x + 3 \, e^{\left (\frac {2}{5} \, x^{2} - \frac {2}{5} \, x e^{4} - \frac {2}{5} \, x e - \frac {16}{5} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 18, normalized size = 0.72
method | result | size |
risch | \(x +3 \,{\mathrm e}^{-\frac {2 x \left ({\mathrm e}^{4}+{\mathrm e}-x +8\right )}{5}}\) | \(18\) |
norman | \(\left (3+x \,{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}+\frac {2 x \,{\mathrm e}}{5}-\frac {2 x^{2}}{5}+\frac {16 x}{5}}\right ) {\mathrm e}^{-\frac {2 x \,{\mathrm e}^{4}}{5}-\frac {2 x \,{\mathrm e}}{5}+\frac {2 x^{2}}{5}-\frac {16 x}{5}}\) | \(48\) |
default | \(x +\frac {12 i \sqrt {\pi }\, {\mathrm e}^{-\frac {5 \left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right )^{2}}{8}} \sqrt {10}\, \erf \left (\frac {i \sqrt {10}\, x}{5}+\frac {i \left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right ) \sqrt {10}}{4}\right )}{5}+3 \,{\mathrm e}^{\frac {2 x^{2}}{5}+\left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right ) x}+\frac {3 i \left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right ) \sqrt {\pi }\, {\mathrm e}^{-\frac {5 \left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right )^{2}}{8}} \sqrt {10}\, \erf \left (\frac {i \sqrt {10}\, x}{5}+\frac {i \left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right ) \sqrt {10}}{4}\right )}{4}+\frac {3 i \sqrt {\pi }\, {\mathrm e}^{1-\frac {5 \left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right )^{2}}{8}} \sqrt {10}\, \erf \left (\frac {i \sqrt {10}\, x}{5}+\frac {i \left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right ) \sqrt {10}}{4}\right )}{10}+\frac {3 i \sqrt {\pi }\, {\mathrm e}^{4-\frac {5 \left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right )^{2}}{8}} \sqrt {10}\, \erf \left (\frac {i \sqrt {10}\, x}{5}+\frac {i \left (-\frac {2 \,{\mathrm e}^{4}}{5}-\frac {2 \,{\mathrm e}}{5}-\frac {16}{5}\right ) \sqrt {10}}{4}\right )}{10}\) | \(234\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.57, size = 270, normalized size = 10.80 \begin {gather*} \frac {12}{5} i \, \sqrt {5} \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\frac {1}{5} i \, \sqrt {5} \sqrt {2} x - \frac {1}{10} i \, \sqrt {5} \sqrt {2} {\left (e^{4} + e + 8\right )}\right ) e^{\left (-\frac {1}{10} \, {\left (e^{4} + e + 8\right )}^{2}\right )} + \frac {3}{10} i \, \sqrt {5} \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\frac {1}{5} i \, \sqrt {5} \sqrt {2} x - \frac {1}{10} i \, \sqrt {5} \sqrt {2} {\left (e^{4} + e + 8\right )}\right ) e^{\left (-\frac {1}{10} \, {\left (e^{4} + e + 8\right )}^{2} + 4\right )} + \frac {3}{10} i \, \sqrt {5} \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\frac {1}{5} i \, \sqrt {5} \sqrt {2} x - \frac {1}{10} i \, \sqrt {5} \sqrt {2} {\left (e^{4} + e + 8\right )}\right ) e^{\left (-\frac {1}{10} \, {\left (e^{4} + e + 8\right )}^{2} + 1\right )} + \frac {3}{20} \, \sqrt {5} \sqrt {2} {\left (\frac {\sqrt {5} \sqrt {2} \sqrt {\frac {2}{5}} \sqrt {\pi } {\left (2 \, x - e^{4} - e - 8\right )} {\left (\operatorname {erf}\left (\sqrt {\frac {1}{10}} \sqrt {-{\left (2 \, x - e^{4} - e - 8\right )}^{2}}\right ) - 1\right )} {\left (e^{4} + e + 8\right )}}{\sqrt {-{\left (2 \, x - e^{4} - e - 8\right )}^{2}}} + 2 \, \sqrt {5} \sqrt {2} e^{\left (\frac {1}{10} \, {\left (2 \, x - e^{4} - e - 8\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{10} \, {\left (e^{4} + e + 8\right )}^{2}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 24, normalized size = 0.96 \begin {gather*} x+3\,{\mathrm {e}}^{\frac {2\,x^2}{5}-\frac {2\,x\,\mathrm {e}}{5}-\frac {2\,x\,{\mathrm {e}}^4}{5}-\frac {16\,x}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 32, normalized size = 1.28 \begin {gather*} x + 3 e^{\frac {2 x^{2}}{5} - \frac {2 x e^{4}}{5} - \frac {16 x}{5} - \frac {2 e x}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________