Optimal. Leaf size=26 \[ e^{2 e^{-x^3 \left (-x+\log \left (\frac {45}{x}+\log (5)\right )\right )^2}} \]
________________________________________________________________________________________
Rubi [F] time = 40.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (2 \exp \left (-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right ) \left (-180 x^3-450 x^4-10 x^5 \log (5)+\left (180 x^2+720 x^3+16 x^4 \log (5)\right ) \log \left (\frac {45+x \log (5)}{x}\right )+\left (-270 x^2-6 x^3 \log (5)\right ) \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )}{45+x \log (5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \exp \left (2 \exp \left (-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right ) x^2 \left (x-\log \left (\frac {45}{x}+\log (5)\right )\right ) \left (-90-225 x-5 x^2 \log (5)+135 \log \left (\frac {45}{x}+\log (5)\right )+3 x \log (5) \log \left (\frac {45}{x}+\log (5)\right )\right )}{45+x \log (5)} \, dx\\ &=2 \int \frac {\exp \left (2 \exp \left (-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right ) x^2 \left (x-\log \left (\frac {45}{x}+\log (5)\right )\right ) \left (-90-225 x-5 x^2 \log (5)+135 \log \left (\frac {45}{x}+\log (5)\right )+3 x \log (5) \log \left (\frac {45}{x}+\log (5)\right )\right )}{45+x \log (5)} \, dx\\ &=2 \int \left (-\frac {5 \exp \left (2 \exp \left (-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right ) x^3 \left (18+45 x+x^2 \log (5)\right )}{45+x \log (5)}+\frac {2 \exp \left (2 \exp \left (-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right ) x^2 \left (45+180 x+4 x^2 \log (5)\right ) \log \left (\frac {45}{x}+\log (5)\right )}{45+x \log (5)}-3 \exp \left (2 \exp \left (-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right ) x^2 \log ^2\left (\frac {45}{x}+\log (5)\right )\right ) \, dx\\ &=4 \int \frac {\exp \left (2 \exp \left (-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right ) x^2 \left (45+180 x+4 x^2 \log (5)\right ) \log \left (\frac {45}{x}+\log (5)\right )}{45+x \log (5)} \, dx-6 \int \exp \left (2 \exp \left (-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right ) x^2 \log ^2\left (\frac {45}{x}+\log (5)\right ) \, dx-10 \int \frac {\exp \left (2 \exp \left (-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right )-x^5+2 x^4 \log \left (\frac {45+x \log (5)}{x}\right )-x^3 \log ^2\left (\frac {45+x \log (5)}{x}\right )\right ) x^3 \left (18+45 x+x^2 \log (5)\right )}{45+x \log (5)} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 42, normalized size = 1.62 \begin {gather*} e^{2 e^{-x^5-x^3 \log ^2\left (\frac {45}{x}+\log (5)\right )} \left (\frac {45}{x}+\log (5)\right )^{2 x^4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 44, normalized size = 1.69 \begin {gather*} e^{\left (2 \, e^{\left (-x^{5} + 2 \, x^{4} \log \left (\frac {x \log \relax (5) + 45}{x}\right ) - x^{3} \log \left (\frac {x \log \relax (5) + 45}{x}\right )^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (5 \, x^{5} \log \relax (5) + 225 \, x^{4} + 90 \, x^{3} + 3 \, {\left (x^{3} \log \relax (5) + 45 \, x^{2}\right )} \log \left (\frac {x \log \relax (5) + 45}{x}\right )^{2} - 2 \, {\left (4 \, x^{4} \log \relax (5) + 180 \, x^{3} + 45 \, x^{2}\right )} \log \left (\frac {x \log \relax (5) + 45}{x}\right )\right )} e^{\left (-x^{5} + 2 \, x^{4} \log \left (\frac {x \log \relax (5) + 45}{x}\right ) - x^{3} \log \left (\frac {x \log \relax (5) + 45}{x}\right )^{2} + 2 \, e^{\left (-x^{5} + 2 \, x^{4} \log \left (\frac {x \log \relax (5) + 45}{x}\right ) - x^{3} \log \left (\frac {x \log \relax (5) + 45}{x}\right )^{2}\right )}\right )}}{x \log \relax (5) + 45}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 45, normalized size = 1.73
method | result | size |
risch | \({\mathrm e}^{2 \left (\frac {x \ln \relax (5)+45}{x}\right )^{2 x^{4}} {\mathrm e}^{-x^{3} \left (\ln \left (\frac {x \ln \relax (5)+45}{x}\right )^{2}+x^{2}\right )}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.75, size = 66, normalized size = 2.54 \begin {gather*} e^{\left (2 \, e^{\left (-x^{5} + 2 \, x^{4} \log \left (x \log \relax (5) + 45\right ) - x^{3} \log \left (x \log \relax (5) + 45\right )^{2} - 2 \, x^{4} \log \relax (x) + 2 \, x^{3} \log \left (x \log \relax (5) + 45\right ) \log \relax (x) - x^{3} \log \relax (x)^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.84, size = 42, normalized size = 1.62 \begin {gather*} {\mathrm {e}}^{2\,{\mathrm {e}}^{-x^3\,{\ln \left (\frac {x\,\ln \relax (5)+45}{x}\right )}^2}\,{\mathrm {e}}^{-x^5}\,{\left (\ln \relax (5)+\frac {45}{x}\right )}^{2\,x^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.66, size = 37, normalized size = 1.42 \begin {gather*} e^{2 e^{- x^{5} + 2 x^{4} \log {\left (\frac {x \log {\relax (5 )} + 45}{x} \right )} - x^{3} \log {\left (\frac {x \log {\relax (5 )} + 45}{x} \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________