Optimal. Leaf size=21 \[ \log \left (\frac {4}{81}+x-\log \left (2 e^{-e^{10}} x^3\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {243-81 x}{-4 x-81 x^2+81 x \log \left (2 e^{-e^{10}} x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {81}{4 \left (1+\frac {81 e^{10}}{4}\right )+81 x-81 \log \left (2 x^3\right )}+\frac {243}{x \left (-4 \left (1+\frac {81 e^{10}}{4}\right )-81 x+81 \log \left (2 x^3\right )\right )}\right ) \, dx\\ &=81 \int \frac {1}{4 \left (1+\frac {81 e^{10}}{4}\right )+81 x-81 \log \left (2 x^3\right )} \, dx+243 \int \frac {1}{x \left (-4 \left (1+\frac {81 e^{10}}{4}\right )-81 x+81 \log \left (2 x^3\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 19, normalized size = 0.90 \begin {gather*} \log \left (4+81 e^{10}+81 x-81 \log \left (2 x^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 19, normalized size = 0.90 \begin {gather*} \log \left (-81 \, x + 81 \, \log \left (2 \, x^{3} e^{\left (-e^{10}\right )}\right ) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 18, normalized size = 0.86 \begin {gather*} \log \left (-81 \, x - 81 \, e^{10} + 81 \, \log \left (2 \, x^{3}\right ) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.86
method | result | size |
risch | \(\ln \left (-x +\ln \left (2 x^{3} {\mathrm e}^{-{\mathrm e}^{10}}\right )-\frac {4}{81}\right )\) | \(18\) |
norman | \(\ln \left (81 x -81 \ln \left (2 x^{3} {\mathrm e}^{-{\mathrm e}^{10}}\right )+4\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 16, normalized size = 0.76 \begin {gather*} \log \left (-\frac {1}{3} \, x - \frac {1}{3} \, e^{10} + \frac {1}{3} \, \log \relax (2) + \log \relax (x) - \frac {4}{243}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.62, size = 14, normalized size = 0.67 \begin {gather*} \ln \left (x+{\mathrm {e}}^{10}-\ln \left (2\,x^3\right )+\frac {4}{81}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.81 \begin {gather*} \log {\left (- x + \log {\left (\frac {2 x^{3}}{e^{e^{10}}} \right )} - \frac {4}{81} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________