Optimal. Leaf size=29 \[ -2+x+\left (256+2 \left (3+e^{\frac {1}{-e^x+x}}\right )+\frac {x}{4}\right ) (3+x) \]
________________________________________________________________________________________
Rubi [F] time = 2.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1055 x^2+2 x^3+e^{2 x} (1055+2 x)+e^x \left (-2110 x-4 x^2\right )+e^{-\frac {1}{e^x-x}} \left (-24+8 e^{2 x}+e^x (24-8 x)-8 x+8 x^2\right )}{4 e^{2 x}-8 e^x x+4 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1055 x^2+2 x^3+e^{2 x} (1055+2 x)+e^x \left (-2110 x-4 x^2\right )+e^{-\frac {1}{e^x-x}} \left (-24+8 e^{2 x}+e^x (24-8 x)-8 x+8 x^2\right )}{4 \left (e^x-x\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {1055 x^2+2 x^3+e^{2 x} (1055+2 x)+e^x \left (-2110 x-4 x^2\right )+e^{-\frac {1}{e^x-x}} \left (-24+8 e^{2 x}+e^x (24-8 x)-8 x+8 x^2\right )}{\left (e^x-x\right )^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {8 e^{-\frac {1}{e^x-x}} (3+x)}{e^x-x}+e^{-\frac {1}{e^x-x}} \left (8+1055 e^{\frac {1}{e^x-x}}+2 e^{\frac {1}{e^x-x}} x\right )+\frac {8 e^{-\frac {1}{e^x-x}} \left (-3+2 x+x^2\right )}{\left (e^x-x\right )^2}\right ) \, dx\\ &=\frac {1}{4} \int e^{-\frac {1}{e^x-x}} \left (8+1055 e^{\frac {1}{e^x-x}}+2 e^{\frac {1}{e^x-x}} x\right ) \, dx+2 \int \frac {e^{-\frac {1}{e^x-x}} (3+x)}{e^x-x} \, dx+2 \int \frac {e^{-\frac {1}{e^x-x}} \left (-3+2 x+x^2\right )}{\left (e^x-x\right )^2} \, dx\\ &=\frac {1}{4} \int \left (1055+8 e^{-\frac {1}{e^x-x}}+2 x\right ) \, dx+2 \int \left (\frac {3 e^{-\frac {1}{e^x-x}}}{e^x-x}+\frac {e^{-\frac {1}{e^x-x}} x}{e^x-x}\right ) \, dx+2 \int \left (-\frac {3 e^{-\frac {1}{e^x-x}}}{\left (e^x-x\right )^2}+\frac {2 e^{-\frac {1}{e^x-x}} x}{\left (e^x-x\right )^2}+\frac {e^{-\frac {1}{e^x-x}} x^2}{\left (e^x-x\right )^2}\right ) \, dx\\ &=\frac {1055 x}{4}+\frac {x^2}{4}+2 \int e^{-\frac {1}{e^x-x}} \, dx+2 \int \frac {e^{-\frac {1}{e^x-x}} x}{e^x-x} \, dx+2 \int \frac {e^{-\frac {1}{e^x-x}} x^2}{\left (e^x-x\right )^2} \, dx+4 \int \frac {e^{-\frac {1}{e^x-x}} x}{\left (e^x-x\right )^2} \, dx-6 \int \frac {e^{-\frac {1}{e^x-x}}}{\left (e^x-x\right )^2} \, dx+6 \int \frac {e^{-\frac {1}{e^x-x}}}{e^x-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.34, size = 30, normalized size = 1.03 \begin {gather*} \frac {1}{4} \left (1055 x+x^2+e^{-\frac {1}{e^x-x}} (24+8 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 23, normalized size = 0.79 \begin {gather*} \frac {1}{4} \, x^{2} + 2 \, {\left (x + 3\right )} e^{\left (\frac {1}{x - e^{x}}\right )} + \frac {1055}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 63, normalized size = 2.17 \begin {gather*} \frac {1}{4} \, {\left (x^{2} e^{x} + 1055 \, x e^{x} + 8 \, x e^{\left (\frac {x^{2} - x e^{x} + 1}{x - e^{x}}\right )} + 24 \, e^{\left (\frac {x^{2} - x e^{x} + 1}{x - e^{x}}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 27, normalized size = 0.93
method | result | size |
risch | \(\frac {x^{2}}{4}+\frac {1055 x}{4}+\left (2 x +6\right ) {\mathrm e}^{-\frac {1}{{\mathrm e}^{x}-x}}\) | \(27\) |
norman | \(\frac {\frac {1055 x^{2}}{4}+\frac {x^{3}}{4}-\frac {1055 \,{\mathrm e}^{x} x}{4}-\frac {{\mathrm e}^{x} x^{2}}{4}+6 \,{\mathrm e}^{-\frac {1}{{\mathrm e}^{x}-x}} x +2 \,{\mathrm e}^{-\frac {1}{{\mathrm e}^{x}-x}} x^{2}-6 \,{\mathrm e}^{-\frac {1}{{\mathrm e}^{x}-x}} {\mathrm e}^{x}-2 \,{\mathrm e}^{-\frac {1}{{\mathrm e}^{x}-x}} {\mathrm e}^{x} x}{x -{\mathrm e}^{x}}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{4} \, x^{2} + \frac {1055}{4} \, x + \frac {1}{4} \, \int \frac {8 \, {\left (x^{2} - {\left (x - 3\right )} e^{x} - x + e^{\left (2 \, x\right )} - 3\right )} e^{\left (\frac {1}{x - e^{x}}\right )}}{x^{2} - 2 \, x e^{x} + e^{\left (2 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.39, size = 24, normalized size = 0.83 \begin {gather*} \frac {1055\,x}{4}+{\mathrm {e}}^{\frac {1}{x-{\mathrm {e}}^x}}\,\left (2\,x+6\right )+\frac {x^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.51, size = 22, normalized size = 0.76 \begin {gather*} \frac {x^{2}}{4} + \frac {1055 x}{4} + \left (2 x + 6\right ) e^{- \frac {1}{- x + e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________