Optimal. Leaf size=25 \[ -\frac {\left (-4+\frac {1}{\log (3)}\right )^2}{x^2}+\frac {\log (x)}{\log (4-x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-4 x^2+x^3\right ) \log ^2(3) \log (4-x)+\left (-8+2 x+(64-16 x) \log (3)+(-128+32 x) \log ^2(3)\right ) \log ^2(4-x)-x^3 \log ^2(3) \log (x)}{\left (-4 x^3+x^4\right ) \log ^2(3) \log ^2(4-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\left (-4 x^2+x^3\right ) \log ^2(3) \log (4-x)+\left (-8+2 x+(64-16 x) \log (3)+(-128+32 x) \log ^2(3)\right ) \log ^2(4-x)-x^3 \log ^2(3) \log (x)}{\left (-4 x^3+x^4\right ) \log ^2(4-x)} \, dx}{\log ^2(3)}\\ &=\frac {\int \frac {\left (-4 x^2+x^3\right ) \log ^2(3) \log (4-x)+\left (-8+2 x+(64-16 x) \log (3)+(-128+32 x) \log ^2(3)\right ) \log ^2(4-x)-x^3 \log ^2(3) \log (x)}{(-4+x) x^3 \log ^2(4-x)} \, dx}{\log ^2(3)}\\ &=\frac {\int \left (\frac {2 (-1+\log (81))^2}{x^3}+\frac {\log ^2(3)}{x \log (4-x)}-\frac {\log ^2(3) \log (x)}{(-4+x) \log ^2(4-x)}\right ) \, dx}{\log ^2(3)}\\ &=-\frac {(1-\log (81))^2}{x^2 \log ^2(3)}+\int \frac {1}{x \log (4-x)} \, dx-\int \frac {\log (x)}{(-4+x) \log ^2(4-x)} \, dx\\ &=-\frac {(1-\log (81))^2}{x^2 \log ^2(3)}+\int \frac {1}{x \log (4-x)} \, dx-\operatorname {Subst}\left (\int \frac {\log (4-x)}{x \log ^2(x)} \, dx,x,4-x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 27, normalized size = 1.08 \begin {gather*} -\frac {(-1+\log (81))^2}{x^2 \log ^2(3)}+\frac {\log (x)}{\log (4-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 47, normalized size = 1.88 \begin {gather*} \frac {x^{2} \log \relax (3)^{2} \log \relax (x) - {\left (16 \, \log \relax (3)^{2} - 8 \, \log \relax (3) + 1\right )} \log \left (-x + 4\right )}{x^{2} \log \relax (3)^{2} \log \left (-x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 38, normalized size = 1.52 \begin {gather*} \frac {\frac {\log \relax (3)^{2} \log \relax (x)}{\log \left (-x + 4\right )} - \frac {16 \, \log \relax (3)^{2} - 8 \, \log \relax (3) + 1}{x^{2}}}{\log \relax (3)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.41, size = 36, normalized size = 1.44
method | result | size |
risch | \(-\frac {16}{x^{2}}+\frac {8}{\ln \relax (3) x^{2}}-\frac {1}{\ln \relax (3)^{2} x^{2}}+\frac {\ln \relax (x )}{\ln \left (-x +4\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 117, normalized size = 4.68 \begin {gather*} -\frac {4 \, {\left (\frac {4 \, {\left (x + 2\right )}}{x^{2}} + \log \left (x - 4\right ) - \log \relax (x)\right )} \log \relax (3)^{2} - 4 \, {\left (\frac {4}{x} + \log \left (x - 4\right ) - \log \relax (x)\right )} \log \relax (3)^{2} - 2 \, {\left (\frac {4 \, {\left (x + 2\right )}}{x^{2}} + \log \left (x - 4\right ) - \log \relax (x)\right )} \log \relax (3) + 2 \, {\left (\frac {4}{x} + \log \left (x - 4\right ) - \log \relax (x)\right )} \log \relax (3) - \frac {2 \, \log \relax (3)^{2} \log \relax (x)}{\log \left (-x + 4\right )} + \frac {x + 2}{x^{2}} - \frac {1}{x}}{2 \, \log \relax (3)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.74, size = 55, normalized size = 2.20 \begin {gather*} \frac {\ln \relax (x)-\frac {\ln \left (4-x\right )\,\left (x-4\right )}{x}}{\ln \left (4-x\right )}-\frac {4\,x\,{\ln \relax (3)}^2-8\,\ln \relax (3)+16\,{\ln \relax (3)}^2+1}{x^2\,{\ln \relax (3)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 31, normalized size = 1.24 \begin {gather*} \frac {\log {\relax (x )}}{\log {\left (4 - x \right )}} - \frac {- 16 \log {\relax (3 )} + 2 + 32 \log {\relax (3 )}^{2}}{2 x^{2} \log {\relax (3 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________