Optimal. Leaf size=21 \[ 3+e^{e^{2 x^2 (3+2 x)^2}}+7 x \]
________________________________________________________________________________________
Rubi [F] time = 0.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (7+\exp \left (e^{18 x^2+24 x^3+8 x^4}+18 x^2+24 x^3+8 x^4\right ) \left (36 x+72 x^2+32 x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=7 x+\int \exp \left (e^{18 x^2+24 x^3+8 x^4}+18 x^2+24 x^3+8 x^4\right ) \left (36 x+72 x^2+32 x^3\right ) \, dx\\ &=7 x+\int \exp \left (e^{18 x^2+24 x^3+8 x^4}+18 x^2+24 x^3+8 x^4\right ) x \left (36+72 x+32 x^2\right ) \, dx\\ &=7 x+\int \left (36 \exp \left (e^{18 x^2+24 x^3+8 x^4}+18 x^2+24 x^3+8 x^4\right ) x+72 \exp \left (e^{18 x^2+24 x^3+8 x^4}+18 x^2+24 x^3+8 x^4\right ) x^2+32 \exp \left (e^{18 x^2+24 x^3+8 x^4}+18 x^2+24 x^3+8 x^4\right ) x^3\right ) \, dx\\ &=7 x+32 \int \exp \left (e^{18 x^2+24 x^3+8 x^4}+18 x^2+24 x^3+8 x^4\right ) x^3 \, dx+36 \int \exp \left (e^{18 x^2+24 x^3+8 x^4}+18 x^2+24 x^3+8 x^4\right ) x \, dx+72 \int \exp \left (e^{18 x^2+24 x^3+8 x^4}+18 x^2+24 x^3+8 x^4\right ) x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 24, normalized size = 1.14 \begin {gather*} e^{e^{18 x^2+24 x^3+8 x^4}}+7 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 73, normalized size = 3.48 \begin {gather*} {\left (7 \, x e^{\left (8 \, x^{4} + 24 \, x^{3} + 18 \, x^{2}\right )} + e^{\left (8 \, x^{4} + 24 \, x^{3} + 18 \, x^{2} + e^{\left (8 \, x^{4} + 24 \, x^{3} + 18 \, x^{2}\right )}\right )}\right )} e^{\left (-8 \, x^{4} - 24 \, x^{3} - 18 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 4 \, {\left (8 \, x^{3} + 18 \, x^{2} + 9 \, x\right )} e^{\left (8 \, x^{4} + 24 \, x^{3} + 18 \, x^{2} + e^{\left (8 \, x^{4} + 24 \, x^{3} + 18 \, x^{2}\right )}\right )} + 7\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 0.90
method | result | size |
risch | \(7 x +{\mathrm e}^{{\mathrm e}^{2 x^{2} \left (2 x +3\right )^{2}}}\) | \(19\) |
default | \(7 x +{\mathrm e}^{{\mathrm e}^{8 x^{4}+24 x^{3}+18 x^{2}}}\) | \(25\) |
norman | \(7 x +{\mathrm e}^{{\mathrm e}^{8 x^{4}+24 x^{3}+18 x^{2}}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 22, normalized size = 1.05 \begin {gather*} 7 \, x + e^{\left (e^{\left (8 \, x^{4} + 24 \, x^{3} + 18 \, x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.50, size = 24, normalized size = 1.14 \begin {gather*} 7\,x+{\mathrm {e}}^{{\mathrm {e}}^{8\,x^4}\,{\mathrm {e}}^{18\,x^2}\,{\mathrm {e}}^{24\,x^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 20, normalized size = 0.95 \begin {gather*} 7 x + e^{e^{8 x^{4} + 24 x^{3} + 18 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________