Optimal. Leaf size=14 \[ \frac {80}{27}-e^{-2 x} x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 10, normalized size of antiderivative = 0.71, number of steps used = 8, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {1593, 2196, 2176, 2194} \begin {gather*} -e^{-2 x} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-2 x} x (-2+2 x) \, dx\\ &=\int \left (-2 e^{-2 x} x+2 e^{-2 x} x^2\right ) \, dx\\ &=-\left (2 \int e^{-2 x} x \, dx\right )+2 \int e^{-2 x} x^2 \, dx\\ &=e^{-2 x} x-e^{-2 x} x^2+2 \int e^{-2 x} x \, dx-\int e^{-2 x} \, dx\\ &=\frac {e^{-2 x}}{2}-e^{-2 x} x^2+\int e^{-2 x} \, dx\\ &=-e^{-2 x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 10, normalized size = 0.71 \begin {gather*} -e^{-2 x} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 9, normalized size = 0.64 \begin {gather*} -x^{2} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 9, normalized size = 0.64 \begin {gather*} -x^{2} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 10, normalized size = 0.71
method | result | size |
gosper | \(-x^{2} {\mathrm e}^{-2 x}\) | \(10\) |
default | \(-x^{2} {\mathrm e}^{-2 x}\) | \(10\) |
norman | \(-x^{2} {\mathrm e}^{-2 x}\) | \(10\) |
risch | \(-x^{2} {\mathrm e}^{-2 x}\) | \(10\) |
meijerg | \(-\frac {\left (12 x^{2}+12 x +6\right ) {\mathrm e}^{-2 x}}{12}+\frac {\left (4 x +2\right ) {\mathrm e}^{-2 x}}{4}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 28, normalized size = 2.00 \begin {gather*} -\frac {1}{2} \, {\left (2 \, x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x\right )} + \frac {1}{2} \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.39, size = 9, normalized size = 0.64 \begin {gather*} -x^2\,{\mathrm {e}}^{-2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 8, normalized size = 0.57 \begin {gather*} - x^{2} e^{- 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________