Optimal. Leaf size=38 \[ \frac {e^{-x+\left (e^{3-x+5 \left (x+\frac {\log (x)}{2}\right )}+x\right )^2}}{x}-x+x^2 \]
________________________________________________________________________________________
Rubi [F] time = 22.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+2 x^3+\exp \left (-x+2 e^{\frac {1}{2} (6+8 x+5 \log (x))} x+x^2+e^{6+8 x} x^5\right ) \left (-1-x+2 x^2+e^{6+8 x} x^5 (5+8 x)+e^{\frac {1}{2} (6+8 x+5 \log (x))} \left (7 x+8 x^2\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\exp \left (3+3 x+x^2+2 e^{3+4 x} x^{7/2}+e^{6+8 x} x^5\right ) x^{3/2} (7+8 x)+\frac {e^{-x} \left (-e^{\left (x+e^{3+4 x} x^{5/2}\right )^2}-e^{\left (x+e^{3+4 x} x^{5/2}\right )^2} x-e^x x^2+2 e^{\left (x+e^{3+4 x} x^{5/2}\right )^2} x^2+2 e^x x^3+5 \exp \left (6+8 x+x^2+2 e^{3+4 x} x^{7/2}+e^{6+8 x} x^5\right ) x^5+8 \exp \left (6+8 x+x^2+2 e^{3+4 x} x^{7/2}+e^{6+8 x} x^5\right ) x^6\right )}{x^2}\right ) \, dx\\ &=\int \exp \left (3+3 x+x^2+2 e^{3+4 x} x^{7/2}+e^{6+8 x} x^5\right ) x^{3/2} (7+8 x) \, dx+\int \frac {e^{-x} \left (-e^{\left (x+e^{3+4 x} x^{5/2}\right )^2}-e^{\left (x+e^{3+4 x} x^{5/2}\right )^2} x-e^x x^2+2 e^{\left (x+e^{3+4 x} x^{5/2}\right )^2} x^2+2 e^x x^3+5 \exp \left (6+8 x+x^2+2 e^{3+4 x} x^{7/2}+e^{6+8 x} x^5\right ) x^5+8 \exp \left (6+8 x+x^2+2 e^{3+4 x} x^{7/2}+e^{6+8 x} x^5\right ) x^6\right )}{x^2} \, dx\\ &=2 \operatorname {Subst}\left (\int \exp \left (3+3 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^4 \left (7+8 x^2\right ) \, dx,x,\sqrt {x}\right )+\int \left (-1+2 x+\exp \left (6+7 x+x^2+2 e^{3+4 x} x^{7/2}+e^{6+8 x} x^5\right ) x^3 (5+8 x)+\frac {e^{-x+\left (x+e^{3+4 x} x^{5/2}\right )^2} \left (-1-x+2 x^2\right )}{x^2}\right ) \, dx\\ &=-x+x^2+2 \operatorname {Subst}\left (\int \left (7 \exp \left (3+3 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^4+8 \exp \left (3+3 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^6\right ) \, dx,x,\sqrt {x}\right )+\int \exp \left (6+7 x+x^2+2 e^{3+4 x} x^{7/2}+e^{6+8 x} x^5\right ) x^3 (5+8 x) \, dx+\int \frac {e^{-x+\left (x+e^{3+4 x} x^{5/2}\right )^2} \left (-1-x+2 x^2\right )}{x^2} \, dx\\ &=-x+x^2+2 \operatorname {Subst}\left (\int \exp \left (6+7 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^7 \left (5+8 x^2\right ) \, dx,x,\sqrt {x}\right )+2 \operatorname {Subst}\left (\int \frac {e^{-x^2+\left (x^2+e^{3+4 x^2} x^5\right )^2} \left (-1-x^2+2 x^4\right )}{x^3} \, dx,x,\sqrt {x}\right )+14 \operatorname {Subst}\left (\int \exp \left (3+3 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^4 \, dx,x,\sqrt {x}\right )+16 \operatorname {Subst}\left (\int \exp \left (3+3 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^6 \, dx,x,\sqrt {x}\right )\\ &=-x+x^2+2 \operatorname {Subst}\left (\int \left (-\frac {e^{-x^2+\left (x^2+e^{3+4 x^2} x^5\right )^2}}{x^3}-\frac {e^{-x^2+\left (x^2+e^{3+4 x^2} x^5\right )^2}}{x}+2 e^{-x^2+\left (x^2+e^{3+4 x^2} x^5\right )^2} x\right ) \, dx,x,\sqrt {x}\right )+2 \operatorname {Subst}\left (\int \left (5 \exp \left (6+7 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^7+8 \exp \left (6+7 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^9\right ) \, dx,x,\sqrt {x}\right )+14 \operatorname {Subst}\left (\int \exp \left (3+3 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^4 \, dx,x,\sqrt {x}\right )+16 \operatorname {Subst}\left (\int \exp \left (3+3 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^6 \, dx,x,\sqrt {x}\right )\\ &=-x+x^2-2 \operatorname {Subst}\left (\int \frac {e^{-x^2+\left (x^2+e^{3+4 x^2} x^5\right )^2}}{x^3} \, dx,x,\sqrt {x}\right )-2 \operatorname {Subst}\left (\int \frac {e^{-x^2+\left (x^2+e^{3+4 x^2} x^5\right )^2}}{x} \, dx,x,\sqrt {x}\right )+4 \operatorname {Subst}\left (\int e^{-x^2+\left (x^2+e^{3+4 x^2} x^5\right )^2} x \, dx,x,\sqrt {x}\right )+10 \operatorname {Subst}\left (\int \exp \left (6+7 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^7 \, dx,x,\sqrt {x}\right )+14 \operatorname {Subst}\left (\int \exp \left (3+3 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^4 \, dx,x,\sqrt {x}\right )+16 \operatorname {Subst}\left (\int \exp \left (3+3 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^6 \, dx,x,\sqrt {x}\right )+16 \operatorname {Subst}\left (\int \exp \left (6+7 x^2+x^4+2 e^{3+4 x^2} x^7+e^{6+8 x^2} x^{10}\right ) x^9 \, dx,x,\sqrt {x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 45, normalized size = 1.18 \begin {gather*} \frac {e^{-x+x^2+2 e^{3+4 x} x^{7/2}+e^{6+8 x} x^5}}{x}-x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 44, normalized size = 1.16 \begin {gather*} \frac {x^{3} - x^{2} + e^{\left (x^{2} + 2 \, x e^{\left (4 \, x + \frac {5}{2} \, \log \relax (x) + 3\right )} - x + e^{\left (8 \, x + 5 \, \log \relax (x) + 6\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{3} - x^{2} + {\left (2 \, x^{2} + {\left (8 \, x + 5\right )} e^{\left (8 \, x + 5 \, \log \relax (x) + 6\right )} + {\left (8 \, x^{2} + 7 \, x\right )} e^{\left (4 \, x + \frac {5}{2} \, \log \relax (x) + 3\right )} - x - 1\right )} e^{\left (x^{2} + 2 \, x e^{\left (4 \, x + \frac {5}{2} \, \log \relax (x) + 3\right )} - x + e^{\left (8 \, x + 5 \, \log \relax (x) + 6\right )}\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 41, normalized size = 1.08
method | result | size |
risch | \(x^{2}-x +\frac {{\mathrm e}^{x^{5} {\mathrm e}^{8 x +6}+2 x^{\frac {7}{2}} {\mathrm e}^{3+4 x}+x^{2}-x}}{x}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.88, size = 40, normalized size = 1.05 \begin {gather*} x^{2} - x + \frac {e^{\left (x^{5} e^{\left (8 \, x + 6\right )} + 2 \, x^{\frac {7}{2}} e^{\left (4 \, x + 3\right )} + x^{2} - x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.58, size = 42, normalized size = 1.11 \begin {gather*} x^2-x+\frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{2\,x^{7/2}\,{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^3}\,{\mathrm {e}}^{x^5\,{\mathrm {e}}^{8\,x}\,{\mathrm {e}}^6}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________