Optimal. Leaf size=23 \[ \frac {1}{5 x^2 \left (\frac {9}{2}+\frac {2}{x}-\log (\log (2))\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 38, normalized size of antiderivative = 1.65, number of steps used = 5, number of rules used = 4, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {6, 1680, 12, 261} \begin {gather*} -\frac {2 (9-2 \log (\log (2)))}{5 \left (x^2 \left (-(9-2 \log (\log (2)))^2\right )-4 x (9-2 \log (\log (2)))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 261
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8+x (-36+8 \log (\log (2)))}{80 x^2+360 x^3+405 x^4+\left (-80 x^3-180 x^4\right ) \log (\log (2))+20 x^4 \log ^2(\log (2))} \, dx\\ &=\int \frac {-8+x (-36+8 \log (\log (2)))}{80 x^2+360 x^3+\left (-80 x^3-180 x^4\right ) \log (\log (2))+x^4 \left (405+20 \log ^2(\log (2))\right )} \, dx\\ &=\operatorname {Subst}\left (\int \frac {4 x (-9+2 \log (\log (2)))^3}{5 \left (4-x^2 (9-2 \log (\log (2)))^2\right )^2} \, dx,x,x+\frac {360-80 \log (\log (2))}{4 \left (405-180 \log (\log (2))+20 \log ^2(\log (2))\right )}\right )\\ &=-\left (\frac {1}{5} \left (4 (9-2 \log (\log (2)))^3\right ) \operatorname {Subst}\left (\int \frac {x}{\left (4-x^2 (9-2 \log (\log (2)))^2\right )^2} \, dx,x,x+\frac {360-80 \log (\log (2))}{4 \left (405-180 \log (\log (2))+20 \log ^2(\log (2))\right )}\right )\right )\\ &=\frac {2}{5 \left (4 x+x^2 (9-2 \log (\log (2)))\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 23, normalized size = 1.00 \begin {gather*} \frac {4}{5 \left (8 x+18 x^2-4 x^2 \log (\log (2))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 21, normalized size = 0.91 \begin {gather*} -\frac {2}{5 \, {\left (2 \, x^{2} \log \left (\log \relax (2)\right ) - 9 \, x^{2} - 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 21, normalized size = 0.91 \begin {gather*} -\frac {2}{5 \, {\left (2 \, x^{2} \log \left (\log \relax (2)\right ) - 9 \, x^{2} - 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 19, normalized size = 0.83
method | result | size |
gosper | \(-\frac {2}{5 x \left (2 x \ln \left (\ln \relax (2)\right )-9 x -4\right )}\) | \(19\) |
norman | \(-\frac {2}{5 x \left (2 x \ln \left (\ln \relax (2)\right )-9 x -4\right )}\) | \(19\) |
risch | \(-\frac {2}{5 x \left (2 x \ln \left (\ln \relax (2)\right )-9 x -4\right )}\) | \(19\) |
default | \(-\frac {\left (2 \ln \left (\ln \relax (2)\right )-9\right )^{2}}{10 \left (-2 \ln \left (\ln \relax (2)\right )+9\right ) \left (-2 x \ln \left (\ln \relax (2)\right )+9 x +4\right )}+\frac {1}{10 x}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 19, normalized size = 0.83 \begin {gather*} -\frac {2}{5 \, {\left (x^{2} {\left (2 \, \log \left (\log \relax (2)\right ) - 9\right )} - 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 20, normalized size = 0.87 \begin {gather*} \frac {2}{20\,x-x^2\,\left (10\,\ln \left (\ln \relax (2)\right )-45\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 17, normalized size = 0.74 \begin {gather*} - \frac {2}{x^{2} \left (-45 + 10 \log {\left (\log {\relax (2 )} \right )}\right ) - 20 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________