Optimal. Leaf size=26 \[ \frac {2 x}{\log \left (\log \left (x+\left (-5+x^2\right )^2+4 (2 x+\log (4 x))\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8-18 x+40 x^2-8 x^4+\left (50+18 x-20 x^2+2 x^4+8 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 \left (4+9 x-20 x^2+4 x^4\right )}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )}+\frac {2}{\log \left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {4+9 x-20 x^2+4 x^4}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \, dx\right )+2 \int \frac {1}{\log \left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \, dx\\ &=-\left (2 \int \left (\frac {4}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )}+\frac {9 x}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )}-\frac {20 x^2}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )}+\frac {4 x^4}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )}\right ) \, dx\right )+2 \int \frac {1}{\log \left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \, dx\\ &=2 \int \frac {1}{\log \left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \, dx-8 \int \frac {1}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \, dx-8 \int \frac {x^4}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \, dx-18 \int \frac {x}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \, dx+40 \int \frac {x^2}{\left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right ) \log ^2\left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 26, normalized size = 1.00 \begin {gather*} \frac {2 x}{\log \left (\log \left (25+9 x-10 x^2+x^4+4 \log (4 x)\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 26, normalized size = 1.00 \begin {gather*} \frac {2 \, x}{\log \left (\log \left (x^{4} - 10 \, x^{2} + 9 \, x + 4 \, \log \left (4 \, x\right ) + 25\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.13, size = 26, normalized size = 1.00 \begin {gather*} \frac {2 \, x}{\log \left (\log \left (x^{4} - 10 \, x^{2} + 9 \, x + 4 \, \log \left (4 \, x\right ) + 25\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 27, normalized size = 1.04
method | result | size |
risch | \(\frac {2 x}{\ln \left (\ln \left (4 \ln \left (4 x \right )+x^{4}-10 x^{2}+9 x +25\right )\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 28, normalized size = 1.08 \begin {gather*} \frac {2 \, x}{\log \left (\log \left (x^{4} - 10 \, x^{2} + 9 \, x + 8 \, \log \relax (2) + 4 \, \log \relax (x) + 25\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.41, size = 26, normalized size = 1.00 \begin {gather*} \frac {2\,x}{\ln \left (\ln \left (9\,x+4\,\ln \left (4\,x\right )-10\,x^2+x^4+25\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.91, size = 26, normalized size = 1.00 \begin {gather*} \frac {2 x}{\log {\left (\log {\left (x^{4} - 10 x^{2} + 9 x + 4 \log {\left (4 x \right )} + 25 \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________