Optimal. Leaf size=24 \[ 1+\frac {\log \left (\left (5-e^{e^x}\right ) (2-5 x)^2\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 1.46, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 15, number of rules used = 7, integrand size = 102, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {6688, 14, 6742, 36, 29, 31, 2551} \begin {gather*} \frac {\log \left (\left (5-e^{e^x}\right ) (2-5 x)^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 31
Rule 36
Rule 2551
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {x \left (-50+10 e^{e^x}+e^{e^x+x} (-2+5 x)\right )}{\left (-5+e^{e^x}\right ) (-2+5 x)}-\log \left (-\left (\left (-5+e^{e^x}\right ) (-2+5 x)^2\right )\right )}{x^2} \, dx\\ &=\int \left (\frac {e^{e^x+x}}{\left (-5+e^{e^x}\right ) x}+\frac {10 x+2 \log \left (-\left (\left (-5+e^{e^x}\right ) (-2+5 x)^2\right )\right )-5 x \log \left (-\left (\left (-5+e^{e^x}\right ) (-2+5 x)^2\right )\right )}{x^2 (-2+5 x)}\right ) \, dx\\ &=\int \frac {e^{e^x+x}}{\left (-5+e^{e^x}\right ) x} \, dx+\int \frac {10 x+2 \log \left (-\left (\left (-5+e^{e^x}\right ) (-2+5 x)^2\right )\right )-5 x \log \left (-\left (\left (-5+e^{e^x}\right ) (-2+5 x)^2\right )\right )}{x^2 (-2+5 x)} \, dx\\ &=\int \frac {e^{e^x+x}}{\left (-5+e^{e^x}\right ) x} \, dx+\int \frac {-10 x-(2-5 x) \log \left (-\left (\left (-5+e^{e^x}\right ) (-2+5 x)^2\right )\right )}{(2-5 x) x^2} \, dx\\ &=\int \frac {e^{e^x+x}}{\left (-5+e^{e^x}\right ) x} \, dx+\int \left (\frac {10}{x (-2+5 x)}-\frac {\log \left (-\left (\left (-5+e^{e^x}\right ) (-2+5 x)^2\right )\right )}{x^2}\right ) \, dx\\ &=10 \int \frac {1}{x (-2+5 x)} \, dx+\int \frac {e^{e^x+x}}{\left (-5+e^{e^x}\right ) x} \, dx-\int \frac {\log \left (-\left (\left (-5+e^{e^x}\right ) (-2+5 x)^2\right )\right )}{x^2} \, dx\\ &=\frac {\log \left (\left (5-e^{e^x}\right ) (2-5 x)^2\right )}{x}-5 \int \frac {1}{x} \, dx+25 \int \frac {1}{-2+5 x} \, dx+\int \frac {e^{e^x+x}}{\left (-5+e^{e^x}\right ) x} \, dx-\int \frac {-50+10 e^{e^x}+e^{e^x+x} (-2+5 x)}{\left (5-e^{e^x}\right ) (2-5 x) x} \, dx\\ &=5 \log (2-5 x)+\frac {\log \left (\left (5-e^{e^x}\right ) (2-5 x)^2\right )}{x}-5 \log (x)+\int \frac {e^{e^x+x}}{\left (-5+e^{e^x}\right ) x} \, dx-\int \left (\frac {e^{e^x+x}}{\left (-5+e^{e^x}\right ) x}+\frac {10}{x (-2+5 x)}\right ) \, dx\\ &=5 \log (2-5 x)+\frac {\log \left (\left (5-e^{e^x}\right ) (2-5 x)^2\right )}{x}-5 \log (x)-10 \int \frac {1}{x (-2+5 x)} \, dx\\ &=5 \log (2-5 x)+\frac {\log \left (\left (5-e^{e^x}\right ) (2-5 x)^2\right )}{x}-5 \log (x)+5 \int \frac {1}{x} \, dx-25 \int \frac {1}{-2+5 x} \, dx\\ &=\frac {\log \left (\left (5-e^{e^x}\right ) (2-5 x)^2\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 21, normalized size = 0.88 \begin {gather*} \frac {\log \left (-\left (\left (-5+e^{e^x}\right ) (-2+5 x)^2\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 30, normalized size = 1.25 \begin {gather*} \frac {\log \left (125 \, x^{2} - {\left (25 \, x^{2} - 20 \, x + 4\right )} e^{\left (e^{x}\right )} - 100 \, x + 20\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.47, size = 53, normalized size = 2.21 \begin {gather*} \frac {\log \left (-{\left (25 \, x^{2} e^{\left (x + e^{x}\right )} - 125 \, x^{2} e^{x} - 20 \, x e^{\left (x + e^{x}\right )} + 100 \, x e^{x} + 4 \, e^{\left (x + e^{x}\right )} - 20 \, e^{x}\right )} e^{\left (-x\right )}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.19, size = 221, normalized size = 9.21
method | result | size |
risch | \(\frac {\ln \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )}{x}+\frac {-i \pi \mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )\right )^{2} \mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )\right ) \mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2}\right )^{3}-i \pi \,\mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right ) \mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2} \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )+i \pi \,\mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2}\right ) \mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2} \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right ) \mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2} \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )^{2}+i \pi \mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2} \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )^{3}-2 i \pi \mathrm {csgn}\left (i \left (x -\frac {2}{5}\right )^{2} \left ({\mathrm e}^{{\mathrm e}^{x}}-5\right )\right )^{2}+2 i \pi +4 \ln \left (x -\frac {2}{5}\right )}{2 x}\) | \(221\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 21, normalized size = 0.88 \begin {gather*} \frac {2 \, \log \left (5 \, x - 2\right ) + \log \left (-e^{\left (e^{x}\right )} + 5\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 47, normalized size = 1.96 \begin {gather*} -\frac {\ln \left (125\,x^2-{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (25\,x^2-20\,x+4\right )-100\,x+20\right )\,\left (2\,x-5\,x^2\right )}{x^2\,\left (5\,x-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.70, size = 27, normalized size = 1.12 \begin {gather*} \frac {\log {\left (125 x^{2} - 100 x + \left (- 25 x^{2} + 20 x - 4\right ) e^{e^{x}} + 20 \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________