Optimal. Leaf size=25 \[ \frac {1}{5} \left (3-25 e^{2 e^x}+e^{4/x}-x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 8, number of rules used = 5, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {12, 14, 2282, 2194, 2209} \begin {gather*} -\frac {x}{5}-5 e^{2 e^x}+\frac {e^{4/x}}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2209
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-4 e^{4/x}-x^2-50 e^{2 e^x+x} x^2}{x^2} \, dx\\ &=\frac {1}{5} \int \left (-50 e^{2 e^x+x}-\frac {4 e^{4/x}+x^2}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {4 e^{4/x}+x^2}{x^2} \, dx\right )-10 \int e^{2 e^x+x} \, dx\\ &=-\left (\frac {1}{5} \int \left (1+\frac {4 e^{4/x}}{x^2}\right ) \, dx\right )-10 \operatorname {Subst}\left (\int e^{2 x} \, dx,x,e^x\right )\\ &=-5 e^{2 e^x}-\frac {x}{5}-\frac {4}{5} \int \frac {e^{4/x}}{x^2} \, dx\\ &=-5 e^{2 e^x}+\frac {e^{4/x}}{5}-\frac {x}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 26, normalized size = 1.04 \begin {gather*} -5 e^{2 e^x}+\frac {e^{4/x}}{5}-\frac {x}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 29, normalized size = 1.16 \begin {gather*} -\frac {1}{5} \, {\left ({\left (x - e^{\frac {4}{x}}\right )} e^{x} + 25 \, e^{\left (x + 2 \, e^{x}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 29, normalized size = 1.16 \begin {gather*} -\frac {1}{5} \, {\left (x e^{x} + 25 \, e^{\left (x + 2 \, e^{x}\right )}\right )} e^{\left (-x\right )} + \frac {1}{5} \, e^{\frac {4}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.80
method | result | size |
default | \(\frac {{\mathrm e}^{\frac {4}{x}}}{5}-5 \,{\mathrm e}^{2 \,{\mathrm e}^{x}}-\frac {x}{5}\) | \(20\) |
risch | \(\frac {{\mathrm e}^{\frac {4}{x}}}{5}-5 \,{\mathrm e}^{2 \,{\mathrm e}^{x}}-\frac {x}{5}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 19, normalized size = 0.76 \begin {gather*} -\frac {1}{5} \, x - 5 \, e^{\left (2 \, e^{x}\right )} + \frac {1}{5} \, e^{\frac {4}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.36, size = 19, normalized size = 0.76 \begin {gather*} \frac {{\mathrm {e}}^{4/x}}{5}-\frac {x}{5}-5\,{\mathrm {e}}^{2\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 17, normalized size = 0.68 \begin {gather*} - \frac {x}{5} + \frac {e^{\frac {4}{x}}}{5} - 5 e^{2 e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________