Optimal. Leaf size=27 \[ \frac {1}{e^2}-\frac {\log (4)}{-4+e^{\left (e^4+x\right )^2}+x-\log (\log (x))} \]
________________________________________________________________________________________
Rubi [A] time = 1.23, antiderivative size = 24, normalized size of antiderivative = 0.89, number of steps used = 3, number of rules used = 3, integrand size = 150, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {6688, 12, 6686} \begin {gather*} \frac {\log (4)}{-x-e^{\left (x+e^4\right )^2}+\log (\log (x))+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (4) \left (-1+x \left (1+2 e^{4+e^8+2 e^4 x+x^2}+2 e^{\left (e^4+x\right )^2} x\right ) \log (x)\right )}{x \log (x) \left (4-e^{\left (e^4+x\right )^2}-x+\log (\log (x))\right )^2} \, dx\\ &=\log (4) \int \frac {-1+x \left (1+2 e^{4+e^8+2 e^4 x+x^2}+2 e^{\left (e^4+x\right )^2} x\right ) \log (x)}{x \log (x) \left (4-e^{\left (e^4+x\right )^2}-x+\log (\log (x))\right )^2} \, dx\\ &=\frac {\log (4)}{4-e^{\left (e^4+x\right )^2}-x+\log (\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 23, normalized size = 0.85 \begin {gather*} -\frac {\log (4)}{-4+e^{\left (e^4+x\right )^2}+x-\log (\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 26, normalized size = 0.96 \begin {gather*} -\frac {2 \, \log \relax (2)}{x + e^{\left (x^{2} + 2 \, x e^{4} + e^{8}\right )} - \log \left (\log \relax (x)\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.73, size = 26, normalized size = 0.96 \begin {gather*} -\frac {2 \, \log \relax (2)}{x + e^{\left (x^{2} + 2 \, x e^{4} + e^{8}\right )} - \log \left (\log \relax (x)\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.00
method | result | size |
risch | \(-\frac {2 \ln \relax (2)}{x +{\mathrm e}^{{\mathrm e}^{8}+2 x \,{\mathrm e}^{4}+x^{2}}-\ln \left (\ln \relax (x )\right )-4}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 26, normalized size = 0.96 \begin {gather*} -\frac {2 \, \log \relax (2)}{x + e^{\left (x^{2} + 2 \, x e^{4} + e^{8}\right )} - \log \left (\log \relax (x)\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.57, size = 28, normalized size = 1.04 \begin {gather*} -\frac {2\,\ln \relax (2)}{x-\ln \left (\ln \relax (x)\right )+{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^4}\,{\mathrm {e}}^{{\mathrm {e}}^8}-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 29, normalized size = 1.07 \begin {gather*} - \frac {2 \log {\relax (2 )}}{x + e^{x^{2} + 2 x e^{4} + e^{8}} - \log {\left (\log {\relax (x )} \right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________