Optimal. Leaf size=22 \[ x (-x+x (1+x) (x+\log (x))+\log (-4+\log (2 x))) \]
________________________________________________________________________________________
Rubi [F] time = 0.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+4 x-16 x^2-16 x^3+\left (-8 x-12 x^2\right ) \log (x)+\left (-x+4 x^2+4 x^3+\left (2 x+3 x^2\right ) \log (x)\right ) \log (2 x)+(-4+\log (2 x)) \log (-4+\log (2 x))}{-4+\log (2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1+4 x-16 x^2-16 x^3-8 x \log (x)-12 x^2 \log (x)-x \log (2 x)+4 x^2 \log (2 x)+4 x^3 \log (2 x)+2 x \log (x) \log (2 x)+3 x^2 \log (x) \log (2 x)}{-4+\log (2 x)}+\log (-4+\log (2 x))\right ) \, dx\\ &=\int \frac {1+4 x-16 x^2-16 x^3-8 x \log (x)-12 x^2 \log (x)-x \log (2 x)+4 x^2 \log (2 x)+4 x^3 \log (2 x)+2 x \log (x) \log (2 x)+3 x^2 \log (x) \log (2 x)}{-4+\log (2 x)} \, dx+\int \log (-4+\log (2 x)) \, dx\\ &=\frac {1}{2} \operatorname {Subst}(\int \log (-4+\log (x)) \, dx,x,2 x)+\int \frac {-1-4 x+16 x^2+16 x^3-x (2+3 x) \log (x) (-4+\log (2 x))-x \left (-1+4 x+4 x^2\right ) \log (2 x)}{4-\log (2 x)} \, dx\\ &=\frac {1}{2} \operatorname {Subst}(\int \log (-4+\log (x)) \, dx,x,2 x)+\int \left (x \left (-1+4 x+4 x^2+2 \log (x)+3 x \log (x)\right )+\frac {1}{-4+\log (2 x)}\right ) \, dx\\ &=\frac {1}{2} \operatorname {Subst}(\int \log (-4+\log (x)) \, dx,x,2 x)+\int x \left (-1+4 x+4 x^2+2 \log (x)+3 x \log (x)\right ) \, dx+\int \frac {1}{-4+\log (2 x)} \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {e^x}{-4+x} \, dx,x,\log (2 x)\right )+\frac {1}{2} \operatorname {Subst}(\int \log (-4+\log (x)) \, dx,x,2 x)+\int \left (x \left (-1+4 x+4 x^2\right )+x (2+3 x) \log (x)\right ) \, dx\\ &=\frac {1}{2} e^4 \text {Ei}(-4+\log (2 x))+\frac {1}{2} \operatorname {Subst}(\int \log (-4+\log (x)) \, dx,x,2 x)+\int x \left (-1+4 x+4 x^2\right ) \, dx+\int x (2+3 x) \log (x) \, dx\\ &=\frac {1}{2} e^4 \text {Ei}(-4+\log (2 x))+\left (x^2+x^3\right ) \log (x)+\frac {1}{2} \operatorname {Subst}(\int \log (-4+\log (x)) \, dx,x,2 x)-\int x (1+x) \, dx+\int \left (-x+4 x^2+4 x^3\right ) \, dx\\ &=-\frac {x^2}{2}+\frac {4 x^3}{3}+x^4+\frac {1}{2} e^4 \text {Ei}(-4+\log (2 x))+\left (x^2+x^3\right ) \log (x)+\frac {1}{2} \operatorname {Subst}(\int \log (-4+\log (x)) \, dx,x,2 x)-\int \left (x+x^2\right ) \, dx\\ &=-x^2+x^3+x^4+\frac {1}{2} e^4 \text {Ei}(-4+\log (2 x))+\left (x^2+x^3\right ) \log (x)+\frac {1}{2} \operatorname {Subst}(\int \log (-4+\log (x)) \, dx,x,2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 25, normalized size = 1.14 \begin {gather*} x \left (x \left (-1+x+x^2\right )+x (1+x) \log (x)+\log (-4+\log (2 x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 31, normalized size = 1.41 \begin {gather*} x^{4} + x^{3} - x^{2} + {\left (x^{3} + x^{2}\right )} \log \relax (x) + x \log \left (\log \relax (2) + \log \relax (x) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 33, normalized size = 1.50 \begin {gather*} x^{4} + x^{3} \log \relax (x) + x^{3} + x^{2} \log \relax (x) - x^{2} + x \log \left (\log \relax (2) + \log \relax (x) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 34, normalized size = 1.55
method | result | size |
risch | \(x^{4}+x^{3} \ln \relax (x )+x^{3}+x^{2} \ln \relax (x )-x^{2}+x \ln \left (\ln \relax (2)+\ln \relax (x )-4\right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {11}{3} \, x^{3} + \frac {1}{4} \, e^{8} E_{1}\left (-2 \, \log \left (2 \, x\right ) + 8\right ) \log \left (2 \, x\right ) - \frac {1}{2} \, e^{12} E_{1}\left (-3 \, \log \left (2 \, x\right ) + 12\right ) \log \left (2 \, x\right ) - \frac {1}{4} \, e^{16} E_{1}\left (-4 \, \log \left (2 \, x\right ) + 16\right ) \log \left (2 \, x\right ) + 2 \, e^{8} E_{1}\left (-2 \, \log \left (2 \, x\right ) + 8\right ) \log \relax (x) + \frac {3}{2} \, e^{12} E_{1}\left (-3 \, \log \left (2 \, x\right ) + 12\right ) \log \relax (x) + \frac {7}{2} \, x^{2} - \frac {9}{8} \, e^{8} E_{2}\left (-2 \, \log \left (2 \, x\right ) + 8\right ) - \frac {1}{3} \, e^{12} E_{2}\left (-3 \, \log \left (2 \, x\right ) + 12\right ) + \frac {1}{16} \, e^{16} E_{2}\left (-4 \, \log \left (2 \, x\right ) + 16\right ) - \frac {1}{2} \, e^{4} E_{1}\left (-\log \left (2 \, x\right ) + 4\right ) - e^{8} E_{1}\left (-2 \, \log \left (2 \, x\right ) + 8\right ) + 2 \, e^{12} E_{1}\left (-3 \, \log \left (2 \, x\right ) + 12\right ) + e^{16} E_{1}\left (-4 \, \log \left (2 \, x\right ) + 16\right ) + {\left (x^{3} + x^{2}\right )} \log \relax (x) + x \log \left (\log \relax (2) + \log \relax (x) - 4\right ) - \int \frac {12 \, x^{2} {\left (\log \relax (2) - 4\right )} + 8 \, x {\left (\log \relax (2) - 4\right )} + 1}{\log \relax (2) + \log \relax (x) - 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.43, size = 31, normalized size = 1.41 \begin {gather*} \ln \relax (x)\,\left (x^3+x^2\right )-x^2+x^3+x^4+x\,\ln \left (\ln \left (2\,x\right )-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 31, normalized size = 1.41 \begin {gather*} x^{4} + x^{3} - x^{2} + x \log {\left (\log {\relax (x )} - 4 + \log {\relax (2 )} \right )} + \left (x^{3} + x^{2}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________