Optimal. Leaf size=22 \[ x \log \left (-1-x-\frac {\log (25)}{4}+(x+\log (5 x))^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x+8 x^2+(8+8 x) \log (5 x)+\left (-4-4 x+4 x^2-\log (25)+8 x \log (5 x)+4 \log ^2(5 x)\right ) \log \left (\frac {1}{4} \left (-4-4 x+4 x^2-\log (25)+8 x \log (5 x)+4 \log ^2(5 x)\right )\right )}{-4-4 x+4 x^2-\log (25)+8 x \log (5 x)+4 \log ^2(5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x-8 x^2-(8+8 x) \log (5 x)-\left (-4-4 x+4 x^2-\log (25)+8 x \log (5 x)+4 \log ^2(5 x)\right ) \log \left (\frac {1}{4} \left (-4-4 x+4 x^2-\log (25)+8 x \log (5 x)+4 \log ^2(5 x)\right )\right )}{4 x-4 x^2+4 \left (1+\frac {\log (5)}{2}\right )-8 x \log (5 x)-4 \log ^2(5 x)} \, dx\\ &=\int \left (\frac {2 \left (-x-2 x^2-2 \log (5 x)-2 x \log (5 x)\right )}{2 x-2 x^2+2 \left (1+\frac {\log (5)}{2}\right )-4 x \log (5 x)-2 \log ^2(5 x)}+\log \left (-1+x^2-\frac {1}{2} (1-2 \log (5)) \log (5)+x (-1+\log (25))+(2 x+\log (25)) \log (x)+\log ^2(x)\right )\right ) \, dx\\ &=2 \int \frac {-x-2 x^2-2 \log (5 x)-2 x \log (5 x)}{2 x-2 x^2+2 \left (1+\frac {\log (5)}{2}\right )-4 x \log (5 x)-2 \log ^2(5 x)} \, dx+\int \log \left (-1+x^2-\frac {1}{2} (1-2 \log (5)) \log (5)+x (-1+\log (25))+(2 x+\log (25)) \log (x)+\log ^2(x)\right ) \, dx\\ &=2 \int \left (\frac {x}{-2 x+2 x^2-2 \left (1+\frac {\log (5)}{2}\right )+4 x \log (5 x)+2 \log ^2(5 x)}+\frac {2 x^2}{-2 x+2 x^2-2 \left (1+\frac {\log (5)}{2}\right )+4 x \log (5 x)+2 \log ^2(5 x)}+\frac {2 \log (5 x)}{-2 x+2 x^2-2 \left (1+\frac {\log (5)}{2}\right )+4 x \log (5 x)+2 \log ^2(5 x)}+\frac {2 x \log (5 x)}{-2 x+2 x^2-2 \left (1+\frac {\log (5)}{2}\right )+4 x \log (5 x)+2 \log ^2(5 x)}\right ) \, dx+\int \log \left (-1+x^2-\frac {1}{2} (1-2 \log (5)) \log (5)+x (-1+\log (25))+(2 x+\log (25)) \log (x)+\log ^2(x)\right ) \, dx\\ &=2 \int \frac {x}{-2 x+2 x^2-2 \left (1+\frac {\log (5)}{2}\right )+4 x \log (5 x)+2 \log ^2(5 x)} \, dx+4 \int \frac {x^2}{-2 x+2 x^2-2 \left (1+\frac {\log (5)}{2}\right )+4 x \log (5 x)+2 \log ^2(5 x)} \, dx+4 \int \frac {\log (5 x)}{-2 x+2 x^2-2 \left (1+\frac {\log (5)}{2}\right )+4 x \log (5 x)+2 \log ^2(5 x)} \, dx+4 \int \frac {x \log (5 x)}{-2 x+2 x^2-2 \left (1+\frac {\log (5)}{2}\right )+4 x \log (5 x)+2 \log ^2(5 x)} \, dx+\int \log \left (-1+x^2-\frac {1}{2} (1-2 \log (5)) \log (5)+x (-1+\log (25))+(2 x+\log (25)) \log (x)+\log ^2(x)\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.48, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 x+8 x^2+(8+8 x) \log (5 x)+\left (-4-4 x+4 x^2-\log (25)+8 x \log (5 x)+4 \log ^2(5 x)\right ) \log \left (\frac {1}{4} \left (-4-4 x+4 x^2-\log (25)+8 x \log (5 x)+4 \log ^2(5 x)\right )\right )}{-4-4 x+4 x^2-\log (25)+8 x \log (5 x)+4 \log ^2(5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 28, normalized size = 1.27 \begin {gather*} x \log \left (x^{2} + 2 \, x \log \left (5 \, x\right ) + \log \left (5 \, x\right )^{2} - x - \frac {1}{2} \, \log \relax (5) - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.57, size = 51, normalized size = 2.32 \begin {gather*} -x \log \relax (2) + x \log \left (2 \, x^{2} + 4 \, x \log \relax (5) + 2 \, \log \relax (5)^{2} + 4 \, x \log \relax (x) + 4 \, \log \relax (5) \log \relax (x) + 2 \, \log \relax (x)^{2} - 2 \, x - \log \relax (5) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 29, normalized size = 1.32
method | result | size |
risch | \(\ln \left (\ln \left (5 x \right )^{2}+2 x \ln \left (5 x \right )-\frac {\ln \relax (5)}{2}+x^{2}-x -1\right ) x\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.92, size = 49, normalized size = 2.23 \begin {gather*} -x \log \relax (2) + x \log \left (2 \, x^{2} + 2 \, x {\left (2 \, \log \relax (5) - 1\right )} + 2 \, \log \relax (5)^{2} + 4 \, {\left (x + \log \relax (5)\right )} \log \relax (x) + 2 \, \log \relax (x)^{2} - \log \relax (5) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.35, size = 28, normalized size = 1.27 \begin {gather*} x\,\ln \left (x^2+2\,x\,\ln \left (5\,x\right )-x+{\ln \left (5\,x\right )}^2-\frac {\ln \relax (5)}{2}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 29, normalized size = 1.32 \begin {gather*} x \log {\left (x^{2} + 2 x \log {\left (5 x \right )} - x + \log {\left (5 x \right )}^{2} - 1 - \frac {\log {\relax (5 )}}{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________