Optimal. Leaf size=33 \[ \log (-1+x)-\frac {2 \log \left (\frac {x+\frac {1}{5} (2+x)^2}{\left (3+e^5\right ) x}\right )}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.01, antiderivative size = 333, normalized size of antiderivative = 10.09, number of steps used = 34, number of rules used = 9, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {6741, 6742, 705, 31, 632, 893, 800, 1628, 2525} \begin {gather*} -\frac {2 \log \left (\frac {x^2+9 x+4}{5 \left (3+e^5\right ) x}\right )}{x}+\log (1-x)+\frac {\left (2795+347 \sqrt {65}\right ) \log \left (2 x-\sqrt {65}+9\right )}{1820}+\frac {1}{455} \left (325+41 \sqrt {65}\right ) \log \left (2 x-\sqrt {65}+9\right )-\frac {3}{910} \left (65+11 \sqrt {65}\right ) \log \left (2 x-\sqrt {65}+9\right )-\frac {1}{4} \left (9+\sqrt {65}\right ) \log \left (2 x-\sqrt {65}+9\right )-\frac {1}{260} \left (65-17 \sqrt {65}\right ) \log \left (2 x-\sqrt {65}+9\right )+\frac {\left (845-109 \sqrt {65}\right ) \log \left (2 x-\sqrt {65}+9\right )}{1820}+\frac {\left (845+109 \sqrt {65}\right ) \log \left (2 x+\sqrt {65}+9\right )}{1820}-\frac {1}{260} \left (65+17 \sqrt {65}\right ) \log \left (2 x+\sqrt {65}+9\right )-\frac {1}{4} \left (9-\sqrt {65}\right ) \log \left (2 x+\sqrt {65}+9\right )-\frac {3}{910} \left (65-11 \sqrt {65}\right ) \log \left (2 x+\sqrt {65}+9\right )+\frac {1}{455} \left (325-41 \sqrt {65}\right ) \log \left (2 x+\sqrt {65}+9\right )+\frac {\left (2795-347 \sqrt {65}\right ) \log \left (2 x+\sqrt {65}+9\right )}{1820} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 632
Rule 705
Rule 800
Rule 893
Rule 1628
Rule 2525
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8-8 x-6 x^2-7 x^3-x^4-\left (-8-10 x+16 x^2+2 x^3\right ) \log \left (\frac {4+9 x+x^2}{15 x+5 e^5 x}\right )}{x^2 \left (4+5 x-8 x^2-x^3\right )} \, dx\\ &=\int \left (\frac {6}{(-1+x) \left (4+9 x+x^2\right )}-\frac {8}{(-1+x) x^2 \left (4+9 x+x^2\right )}+\frac {8}{(-1+x) x \left (4+9 x+x^2\right )}+\frac {7 x}{(-1+x) \left (4+9 x+x^2\right )}+\frac {x^2}{(-1+x) \left (4+9 x+x^2\right )}+\frac {2 \log \left (\frac {4+9 x+x^2}{5 \left (3+e^5\right ) x}\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {\log \left (\frac {4+9 x+x^2}{5 \left (3+e^5\right ) x}\right )}{x^2} \, dx+6 \int \frac {1}{(-1+x) \left (4+9 x+x^2\right )} \, dx+7 \int \frac {x}{(-1+x) \left (4+9 x+x^2\right )} \, dx-8 \int \frac {1}{(-1+x) x^2 \left (4+9 x+x^2\right )} \, dx+8 \int \frac {1}{(-1+x) x \left (4+9 x+x^2\right )} \, dx+\int \frac {x^2}{(-1+x) \left (4+9 x+x^2\right )} \, dx\\ &=-\frac {2 \log \left (\frac {4+9 x+x^2}{5 \left (3+e^5\right ) x}\right )}{x}+\frac {3}{7} \int \frac {1}{-1+x} \, dx+\frac {3}{7} \int \frac {-10-x}{4+9 x+x^2} \, dx+2 \int \frac {-4+x^2}{x^2 \left (4+9 x+x^2\right )} \, dx+7 \int \left (\frac {1}{14 (-1+x)}+\frac {4-x}{14 \left (4+9 x+x^2\right )}\right ) \, dx-8 \int \left (\frac {1}{14 (-1+x)}-\frac {1}{4 x^2}+\frac {5}{16 x}+\frac {-367-43 x}{112 \left (4+9 x+x^2\right )}\right ) \, dx+8 \int \left (\frac {1}{14 (-1+x)}-\frac {1}{4 x}+\frac {43+5 x}{28 \left (4+9 x+x^2\right )}\right ) \, dx+\int \left (\frac {1}{14 (-1+x)}+\frac {4+13 x}{14 \left (4+9 x+x^2\right )}\right ) \, dx\\ &=-\frac {2}{x}+\log (1-x)-\frac {9 \log (x)}{2}-\frac {2 \log \left (\frac {4+9 x+x^2}{5 \left (3+e^5\right ) x}\right )}{x}-\frac {1}{14} \int \frac {-367-43 x}{4+9 x+x^2} \, dx+\frac {1}{14} \int \frac {4+13 x}{4+9 x+x^2} \, dx+\frac {2}{7} \int \frac {43+5 x}{4+9 x+x^2} \, dx+\frac {1}{2} \int \frac {4-x}{4+9 x+x^2} \, dx+2 \int \left (-\frac {1}{x^2}+\frac {9}{4 x}+\frac {-73-9 x}{4 \left (4+9 x+x^2\right )}\right ) \, dx-\frac {1}{910} \left (3 \left (65-11 \sqrt {65}\right )\right ) \int \frac {1}{\frac {9}{2}+\frac {\sqrt {65}}{2}+x} \, dx-\frac {1}{910} \left (3 \left (65+11 \sqrt {65}\right )\right ) \int \frac {1}{\frac {9}{2}-\frac {\sqrt {65}}{2}+x} \, dx\\ &=\log (1-x)-\frac {3}{910} \left (65+11 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )-\frac {3}{910} \left (65-11 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )-\frac {2 \log \left (\frac {4+9 x+x^2}{5 \left (3+e^5\right ) x}\right )}{x}+\frac {1}{2} \int \frac {-73-9 x}{4+9 x+x^2} \, dx+\frac {\left (845-109 \sqrt {65}\right ) \int \frac {1}{\frac {9}{2}-\frac {\sqrt {65}}{2}+x} \, dx}{1820}+\frac {1}{455} \left (325-41 \sqrt {65}\right ) \int \frac {1}{\frac {9}{2}+\frac {\sqrt {65}}{2}+x} \, dx+\frac {1}{260} \left (-65+17 \sqrt {65}\right ) \int \frac {1}{\frac {9}{2}-\frac {\sqrt {65}}{2}+x} \, dx-\frac {1}{260} \left (65+17 \sqrt {65}\right ) \int \frac {1}{\frac {9}{2}+\frac {\sqrt {65}}{2}+x} \, dx+\frac {1}{455} \left (325+41 \sqrt {65}\right ) \int \frac {1}{\frac {9}{2}-\frac {\sqrt {65}}{2}+x} \, dx+\frac {\left (845+109 \sqrt {65}\right ) \int \frac {1}{\frac {9}{2}+\frac {\sqrt {65}}{2}+x} \, dx}{1820}-\frac {\left (-2795+347 \sqrt {65}\right ) \int \frac {1}{\frac {9}{2}+\frac {\sqrt {65}}{2}+x} \, dx}{1820}+\frac {\left (2795+347 \sqrt {65}\right ) \int \frac {1}{\frac {9}{2}-\frac {\sqrt {65}}{2}+x} \, dx}{1820}\\ &=\log (1-x)+\frac {\left (845-109 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )}{1820}-\frac {1}{260} \left (65-17 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )-\frac {3}{910} \left (65+11 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )+\frac {1}{455} \left (325+41 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )+\frac {\left (2795+347 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )}{1820}+\frac {\left (2795-347 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )}{1820}+\frac {1}{455} \left (325-41 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )-\frac {3}{910} \left (65-11 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )-\frac {1}{260} \left (65+17 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )+\frac {\left (845+109 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )}{1820}-\frac {2 \log \left (\frac {4+9 x+x^2}{5 \left (3+e^5\right ) x}\right )}{x}+\frac {1}{4} \left (-9-\sqrt {65}\right ) \int \frac {1}{\frac {9}{2}-\frac {\sqrt {65}}{2}+x} \, dx+\frac {1}{4} \left (-9+\sqrt {65}\right ) \int \frac {1}{\frac {9}{2}+\frac {\sqrt {65}}{2}+x} \, dx\\ &=\log (1-x)+\frac {\left (845-109 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )}{1820}-\frac {1}{260} \left (65-17 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )-\frac {1}{4} \left (9+\sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )-\frac {3}{910} \left (65+11 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )+\frac {1}{455} \left (325+41 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )+\frac {\left (2795+347 \sqrt {65}\right ) \log \left (9-\sqrt {65}+2 x\right )}{1820}+\frac {\left (2795-347 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )}{1820}+\frac {1}{455} \left (325-41 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )-\frac {3}{910} \left (65-11 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )-\frac {1}{4} \left (9-\sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )-\frac {1}{260} \left (65+17 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )+\frac {\left (845+109 \sqrt {65}\right ) \log \left (9+\sqrt {65}+2 x\right )}{1820}-\frac {2 \log \left (\frac {4+9 x+x^2}{5 \left (3+e^5\right ) x}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 35, normalized size = 1.06 \begin {gather*} \log (1-x)-\frac {2 \log \left (\frac {4+9 x+x^2}{5 \left (3+e^5\right ) x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 34, normalized size = 1.03 \begin {gather*} \frac {x \log \left (x - 1\right ) - 2 \, \log \left (\frac {x^{2} + 9 \, x + 4}{5 \, {\left (x e^{5} + 3 \, x\right )}}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.69, size = 34, normalized size = 1.03 \begin {gather*} \frac {x \log \left (x - 1\right ) - 2 \, \log \left (\frac {x^{2} + 9 \, x + 4}{5 \, {\left (x e^{5} + 3 \, x\right )}}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 32, normalized size = 0.97
method | result | size |
norman | \(-\frac {2 \ln \left (\frac {x^{2}+9 x +4}{5 x \,{\mathrm e}^{5}+15 x}\right )}{x}+\ln \left (x -1\right )\) | \(32\) |
risch | \(-\frac {2 \ln \left (\frac {x^{2}+9 x +4}{5 x \,{\mathrm e}^{5}+15 x}\right )}{x}+\ln \left (x -1\right )\) | \(32\) |
default | \(\ln \left (x -1\right )-\frac {2 \ln \left (\frac {x^{2}+9 x +4}{x}\right )}{x}+\frac {2 \ln \left (3+{\mathrm e}^{5}\right )}{x}+\frac {2 \ln \relax (5)}{x}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.71, size = 67, normalized size = 2.03 \begin {gather*} -\frac {{\left (9 \, x + 8\right )} \log \left (x^{2} + 9 \, x + 4\right ) - 2 \, {\left (9 \, x + 4\right )} \log \relax (x) - 8 \, \log \relax (5) - 8 \, \log \left (e^{5} + 3\right ) - 8}{4 \, x} - \frac {2}{x} + \frac {9}{4} \, \log \left (x^{2} + 9 \, x + 4\right ) + \log \left (x - 1\right ) - \frac {9}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.21, size = 31, normalized size = 0.94 \begin {gather*} \ln \left (x-1\right )-\frac {2\,\ln \left (\frac {x^2+9\,x+4}{15\,x+5\,x\,{\mathrm {e}}^5}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 27, normalized size = 0.82 \begin {gather*} \log {\left (x - 1 \right )} - \frac {2 \log {\left (\frac {x^{2} + 9 x + 4}{15 x + 5 x e^{5}} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________