3.14.63 \(\int (1-64 e^{-8+8 e^2-32 e^{2 x}+2 x}+4 x^3+e^{-4+4 e^2-16 e^{2 x}} (-4 x+64 e^{2 x} x^2)) \, dx\)

Optimal. Leaf size=26 \[ x+\left (-e^{4 \left (-1+e^2-4 e^{2 x}\right )}+x^2\right )^2 \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 48, normalized size of antiderivative = 1.85, number of steps used = 4, number of rules used = 3, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {2282, 2194, 2288} \begin {gather*} x^4-2 e^{-16 e^{2 x}-4 \left (1-e^2\right )} x^2+x+e^{-32 e^{2 x}-8 \left (1-e^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1 - 64*E^(-8 + 8*E^2 - 32*E^(2*x) + 2*x) + 4*x^3 + E^(-4 + 4*E^2 - 16*E^(2*x))*(-4*x + 64*E^(2*x)*x^2),x]

[Out]

E^(-32*E^(2*x) - 8*(1 - E^2)) + x - 2*E^(-16*E^(2*x) - 4*(1 - E^2))*x^2 + x^4

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=x+x^4-64 \int e^{-8+8 e^2-32 e^{2 x}+2 x} \, dx+\int e^{-4+4 e^2-16 e^{2 x}} \left (-4 x+64 e^{2 x} x^2\right ) \, dx\\ &=x-2 e^{-16 e^{2 x}-4 \left (1-e^2\right )} x^2+x^4-32 \operatorname {Subst}\left (\int e^{-8 \left (1-e^2\right )-32 x} \, dx,x,e^{2 x}\right )\\ &=e^{-32 e^{2 x}-8 \left (1-e^2\right )}+x-2 e^{-16 e^{2 x}-4 \left (1-e^2\right )} x^2+x^4\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 43, normalized size = 1.65 \begin {gather*} e^{-32 e^{2 x}+8 \left (-1+e^2\right )}+x-2 e^{4 \left (-1+e^2-4 e^{2 x}\right )} x^2+x^4 \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1 - 64*E^(-8 + 8*E^2 - 32*E^(2*x) + 2*x) + 4*x^3 + E^(-4 + 4*E^2 - 16*E^(2*x))*(-4*x + 64*E^(2*x)*x^
2),x]

[Out]

E^(-32*E^(2*x) + 8*(-1 + E^2)) + x - 2*E^(4*(-1 + E^2 - 4*E^(2*x)))*x^2 + x^4

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 36, normalized size = 1.38 \begin {gather*} x^{4} - 2 \, x^{2} e^{\left (4 \, e^{2} - 16 \, e^{\left (2 \, x\right )} - 4\right )} + x + e^{\left (8 \, e^{2} - 32 \, e^{\left (2 \, x\right )} - 8\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-64*exp(x)^2*exp(-8*exp(x)^2+2*exp(2)-2)^4+(64*exp(x)^2*x^2-4*x)*exp(-8*exp(x)^2+2*exp(2)-2)^2+4*x^3
+1,x, algorithm="fricas")

[Out]

x^4 - 2*x^2*e^(4*e^2 - 16*e^(2*x) - 4) + x + e^(8*e^2 - 32*e^(2*x) - 8)

________________________________________________________________________________________

giac [A]  time = 0.67, size = 36, normalized size = 1.38 \begin {gather*} x^{4} - 2 \, x^{2} e^{\left (4 \, e^{2} - 16 \, e^{\left (2 \, x\right )} - 4\right )} + x + e^{\left (8 \, e^{2} - 32 \, e^{\left (2 \, x\right )} - 8\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-64*exp(x)^2*exp(-8*exp(x)^2+2*exp(2)-2)^4+(64*exp(x)^2*x^2-4*x)*exp(-8*exp(x)^2+2*exp(2)-2)^2+4*x^3
+1,x, algorithm="giac")

[Out]

x^4 - 2*x^2*e^(4*e^2 - 16*e^(2*x) - 4) + x + e^(8*e^2 - 32*e^(2*x) - 8)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 37, normalized size = 1.42




method result size



risch \(x -2 x^{2} {\mathrm e}^{-16 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{2}-4}+x^{4}+{\mathrm e}^{-32 \,{\mathrm e}^{2 x}+8 \,{\mathrm e}^{2}-8}\) \(37\)
default \(x -2 x^{2} {\mathrm e}^{-16 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{2}-4}+x^{4}+{\mathrm e}^{-32 \,{\mathrm e}^{2 x}+8 \,{\mathrm e}^{2}-8}\) \(41\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-64*exp(x)^2*exp(-8*exp(x)^2+2*exp(2)-2)^4+(64*exp(x)^2*x^2-4*x)*exp(-8*exp(x)^2+2*exp(2)-2)^2+4*x^3+1,x,m
ethod=_RETURNVERBOSE)

[Out]

x-2*x^2*exp(-16*exp(2*x)+4*exp(2)-4)+x^4+exp(-32*exp(2*x)+8*exp(2)-8)

________________________________________________________________________________________

maxima [A]  time = 0.77, size = 36, normalized size = 1.38 \begin {gather*} x^{4} - 2 \, x^{2} e^{\left (4 \, e^{2} - 16 \, e^{\left (2 \, x\right )} - 4\right )} + x + e^{\left (8 \, e^{2} - 32 \, e^{\left (2 \, x\right )} - 8\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-64*exp(x)^2*exp(-8*exp(x)^2+2*exp(2)-2)^4+(64*exp(x)^2*x^2-4*x)*exp(-8*exp(x)^2+2*exp(2)-2)^2+4*x^3
+1,x, algorithm="maxima")

[Out]

x^4 - 2*x^2*e^(4*e^2 - 16*e^(2*x) - 4) + x + e^(8*e^2 - 32*e^(2*x) - 8)

________________________________________________________________________________________

mupad [B]  time = 1.00, size = 36, normalized size = 1.38 \begin {gather*} x+{\mathrm {e}}^{8\,{\mathrm {e}}^2-32\,{\mathrm {e}}^{2\,x}-8}-2\,x^2\,{\mathrm {e}}^{4\,{\mathrm {e}}^2-16\,{\mathrm {e}}^{2\,x}-4}+x^4 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(4*x^3 - 64*exp(8*exp(2) - 32*exp(2*x) - 8)*exp(2*x) - exp(4*exp(2) - 16*exp(2*x) - 4)*(4*x - 64*x^2*exp(2*
x)) + 1,x)

[Out]

x + exp(8*exp(2) - 32*exp(2*x) - 8) - 2*x^2*exp(4*exp(2) - 16*exp(2*x) - 4) + x^4

________________________________________________________________________________________

sympy [A]  time = 0.19, size = 39, normalized size = 1.50 \begin {gather*} x^{4} - 2 x^{2} e^{- 16 e^{2 x} - 4 + 4 e^{2}} + x + e^{- 32 e^{2 x} - 8 + 8 e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-64*exp(x)**2*exp(-8*exp(x)**2+2*exp(2)-2)**4+(64*exp(x)**2*x**2-4*x)*exp(-8*exp(x)**2+2*exp(2)-2)**
2+4*x**3+1,x)

[Out]

x**4 - 2*x**2*exp(-16*exp(2*x) - 4 + 4*exp(2)) + x + exp(-32*exp(2*x) - 8 + 8*exp(2))

________________________________________________________________________________________