Optimal. Leaf size=26 \[ x+\left (-e^{4 \left (-1+e^2-4 e^{2 x}\right )}+x^2\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 48, normalized size of antiderivative = 1.85, number of steps used = 4, number of rules used = 3, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {2282, 2194, 2288} \begin {gather*} x^4-2 e^{-16 e^{2 x}-4 \left (1-e^2\right )} x^2+x+e^{-32 e^{2 x}-8 \left (1-e^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2282
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+x^4-64 \int e^{-8+8 e^2-32 e^{2 x}+2 x} \, dx+\int e^{-4+4 e^2-16 e^{2 x}} \left (-4 x+64 e^{2 x} x^2\right ) \, dx\\ &=x-2 e^{-16 e^{2 x}-4 \left (1-e^2\right )} x^2+x^4-32 \operatorname {Subst}\left (\int e^{-8 \left (1-e^2\right )-32 x} \, dx,x,e^{2 x}\right )\\ &=e^{-32 e^{2 x}-8 \left (1-e^2\right )}+x-2 e^{-16 e^{2 x}-4 \left (1-e^2\right )} x^2+x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 43, normalized size = 1.65 \begin {gather*} e^{-32 e^{2 x}+8 \left (-1+e^2\right )}+x-2 e^{4 \left (-1+e^2-4 e^{2 x}\right )} x^2+x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 36, normalized size = 1.38 \begin {gather*} x^{4} - 2 \, x^{2} e^{\left (4 \, e^{2} - 16 \, e^{\left (2 \, x\right )} - 4\right )} + x + e^{\left (8 \, e^{2} - 32 \, e^{\left (2 \, x\right )} - 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.67, size = 36, normalized size = 1.38 \begin {gather*} x^{4} - 2 \, x^{2} e^{\left (4 \, e^{2} - 16 \, e^{\left (2 \, x\right )} - 4\right )} + x + e^{\left (8 \, e^{2} - 32 \, e^{\left (2 \, x\right )} - 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 37, normalized size = 1.42
method | result | size |
risch | \(x -2 x^{2} {\mathrm e}^{-16 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{2}-4}+x^{4}+{\mathrm e}^{-32 \,{\mathrm e}^{2 x}+8 \,{\mathrm e}^{2}-8}\) | \(37\) |
default | \(x -2 x^{2} {\mathrm e}^{-16 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{2}-4}+x^{4}+{\mathrm e}^{-32 \,{\mathrm e}^{2 x}+8 \,{\mathrm e}^{2}-8}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.77, size = 36, normalized size = 1.38 \begin {gather*} x^{4} - 2 \, x^{2} e^{\left (4 \, e^{2} - 16 \, e^{\left (2 \, x\right )} - 4\right )} + x + e^{\left (8 \, e^{2} - 32 \, e^{\left (2 \, x\right )} - 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.00, size = 36, normalized size = 1.38 \begin {gather*} x+{\mathrm {e}}^{8\,{\mathrm {e}}^2-32\,{\mathrm {e}}^{2\,x}-8}-2\,x^2\,{\mathrm {e}}^{4\,{\mathrm {e}}^2-16\,{\mathrm {e}}^{2\,x}-4}+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 39, normalized size = 1.50 \begin {gather*} x^{4} - 2 x^{2} e^{- 16 e^{2 x} - 4 + 4 e^{2}} + x + e^{- 32 e^{2 x} - 8 + 8 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________