Optimal. Leaf size=27 \[ 9+e^{\frac {5 \left (-3+\frac {2}{\left (3+e^2+x\right )^2}\right )}{x}}+x-x^2 \]
________________________________________________________________________________________
Rubi [F] time = 16.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {27 x^2-27 x^3-45 x^4-17 x^5-2 x^6+e^6 \left (x^2-2 x^3\right )+e^4 \left (9 x^2-15 x^3-6 x^4\right )+e^2 \left (27 x^2-36 x^3-33 x^4-6 x^5\right )+\exp \left (\frac {-125-15 e^4+e^2 (-90-30 x)-90 x-15 x^2}{9 x+e^4 x+6 x^2+x^3+e^2 \left (6 x+2 x^2\right )}\right ) \left (375+15 e^6+375 x+135 x^2+15 x^3+e^4 (135+45 x)+e^2 \left (395+270 x+45 x^2\right )\right )}{27 x^2+e^6 x^2+27 x^3+9 x^4+x^5+e^4 \left (9 x^2+3 x^3\right )+e^2 \left (27 x^2+18 x^3+3 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {27 x^2-27 x^3-45 x^4-17 x^5-2 x^6+e^6 \left (x^2-2 x^3\right )+e^4 \left (9 x^2-15 x^3-6 x^4\right )+e^2 \left (27 x^2-36 x^3-33 x^4-6 x^5\right )+\exp \left (\frac {-125-15 e^4+e^2 (-90-30 x)-90 x-15 x^2}{9 x+e^4 x+6 x^2+x^3+e^2 \left (6 x+2 x^2\right )}\right ) \left (375+15 e^6+375 x+135 x^2+15 x^3+e^4 (135+45 x)+e^2 \left (395+270 x+45 x^2\right )\right )}{\left (27+e^6\right ) x^2+27 x^3+9 x^4+x^5+e^4 \left (9 x^2+3 x^3\right )+e^2 \left (27 x^2+18 x^3+3 x^4\right )} \, dx\\ &=\int \frac {27 x^2-27 x^3-45 x^4-17 x^5-2 x^6-3 e^2 x^2 (3+x)^2 (-1+2 x)-3 e^4 x^2 \left (-3+5 x+2 x^2\right )+e^6 \left (x^2-2 x^3\right )+5 \exp \left (-\frac {5 \left (25+3 e^4+18 x+3 x^2+6 e^2 (3+x)\right )}{x \left (3+e^2+x\right )^2}\right ) \left (3 e^6+9 e^4 (3+x)+e^2 \left (79+54 x+9 x^2\right )+3 \left (25+25 x+9 x^2+x^3\right )\right )}{x^2 \left (3+e^2+x\right )^3} \, dx\\ &=\int \left (\frac {27}{\left (3+e^2+x\right )^3}-\frac {27 x}{\left (3+e^2+x\right )^3}-\frac {45 x^2}{\left (3+e^2+x\right )^3}-\frac {17 x^3}{\left (3+e^2+x\right )^3}-\frac {2 x^4}{\left (3+e^2+x\right )^3}-\frac {e^6 (-1+2 x)}{\left (3+e^2+x\right )^3}-\frac {3 e^4 (3+x) (-1+2 x)}{\left (3+e^2+x\right )^3}-\frac {3 e^2 (3+x)^2 (-1+2 x)}{\left (3+e^2+x\right )^3}+\frac {5 \exp \left (-\frac {5 \left (25+18 e^2+3 e^4+6 \left (3+e^2\right ) x+3 x^2\right )}{x \left (3+e^2+x\right )^2}\right ) \left (75+79 e^2+27 e^4+3 e^6+3 \left (25+18 e^2+3 e^4\right ) x+9 \left (3+e^2\right ) x^2+3 x^3\right )}{x^2 \left (3+e^2+x\right )^3}\right ) \, dx\\ &=-\frac {27}{2 \left (3+e^2+x\right )^2}-2 \int \frac {x^4}{\left (3+e^2+x\right )^3} \, dx+5 \int \frac {\exp \left (-\frac {5 \left (25+18 e^2+3 e^4+6 \left (3+e^2\right ) x+3 x^2\right )}{x \left (3+e^2+x\right )^2}\right ) \left (75+79 e^2+27 e^4+3 e^6+3 \left (25+18 e^2+3 e^4\right ) x+9 \left (3+e^2\right ) x^2+3 x^3\right )}{x^2 \left (3+e^2+x\right )^3} \, dx-17 \int \frac {x^3}{\left (3+e^2+x\right )^3} \, dx-27 \int \frac {x}{\left (3+e^2+x\right )^3} \, dx-45 \int \frac {x^2}{\left (3+e^2+x\right )^3} \, dx-\left (3 e^2\right ) \int \frac {(3+x)^2 (-1+2 x)}{\left (3+e^2+x\right )^3} \, dx-\left (3 e^4\right ) \int \frac {(3+x) (-1+2 x)}{\left (3+e^2+x\right )^3} \, dx-e^6 \int \frac {-1+2 x}{\left (3+e^2+x\right )^3} \, dx\\ &=-\frac {27}{2 \left (3+e^2+x\right )^2}-\frac {e^6 (1-2 x)^2}{2 \left (7+2 e^2\right ) \left (3+e^2+x\right )^2}-\frac {27 x^2}{2 \left (3+e^2\right ) \left (3+e^2+x\right )^2}-2 \int \left (-3 \left (3+e^2\right )+x+\frac {\left (3+e^2\right )^4}{\left (3+e^2+x\right )^3}-\frac {4 \left (3+e^2\right )^3}{\left (3+e^2+x\right )^2}+\frac {6 \left (3+e^2\right )^2}{3+e^2+x}\right ) \, dx+5 \int \left (\frac {\exp \left (-\frac {5 \left (25+18 e^2+3 e^4+6 \left (3+e^2\right ) x+3 x^2\right )}{x \left (3+e^2+x\right )^2}\right ) \left (25+18 e^2+3 e^4\right )}{\left (3+e^2\right )^2 x^2}+\frac {4 \exp \left (-\frac {5 \left (25+18 e^2+3 e^4+6 \left (3+e^2\right ) x+3 x^2\right )}{x \left (3+e^2+x\right )^2}\right )}{\left (3+e^2\right ) \left (3+e^2+x\right )^3}+\frac {2 \exp \left (-\frac {5 \left (25+18 e^2+3 e^4+6 \left (3+e^2\right ) x+3 x^2\right )}{x \left (3+e^2+x\right )^2}\right )}{\left (3+e^2\right )^2 \left (3+e^2+x\right )^2}\right ) \, dx-17 \int \left (1-\frac {\left (3+e^2\right )^3}{\left (3+e^2+x\right )^3}+\frac {3 \left (3+e^2\right )^2}{\left (3+e^2+x\right )^2}-\frac {3 \left (3+e^2\right )}{3+e^2+x}\right ) \, dx-45 \int \left (\frac {\left (3+e^2\right )^2}{\left (3+e^2+x\right )^3}-\frac {2 \left (3+e^2\right )}{\left (3+e^2+x\right )^2}+\frac {1}{3+e^2+x}\right ) \, dx-\left (3 e^2\right ) \int \left (2-\frac {e^4 \left (7+2 e^2\right )}{\left (3+e^2+x\right )^3}+\frac {2 e^2 \left (7+3 e^2\right )}{\left (3+e^2+x\right )^2}+\frac {-7-6 e^2}{3+e^2+x}\right ) \, dx-\left (3 e^4\right ) \int \left (\frac {e^2 \left (7+2 e^2\right )}{\left (3+e^2+x\right )^3}+\frac {-7-4 e^2}{\left (3+e^2+x\right )^2}+\frac {2}{3+e^2+x}\right ) \, dx\\ &=-17 x-6 e^2 x+6 \left (3+e^2\right ) x-x^2-\frac {27}{2 \left (3+e^2+x\right )^2}+\frac {45 \left (3+e^2\right )^2}{2 \left (3+e^2+x\right )^2}-\frac {17 \left (3+e^2\right )^3}{2 \left (3+e^2+x\right )^2}+\frac {\left (3+e^2\right )^4}{\left (3+e^2+x\right )^2}-\frac {e^6 (1-2 x)^2}{2 \left (7+2 e^2\right ) \left (3+e^2+x\right )^2}-\frac {27 x^2}{2 \left (3+e^2\right ) \left (3+e^2+x\right )^2}-\frac {90 \left (3+e^2\right )}{3+e^2+x}+\frac {51 \left (3+e^2\right )^2}{3+e^2+x}-\frac {8 \left (3+e^2\right )^3}{3+e^2+x}+\frac {6 e^4 \left (7+3 e^2\right )}{3+e^2+x}-\frac {3 e^4 \left (7+4 e^2\right )}{3+e^2+x}-45 \log \left (3+e^2+x\right )-6 e^4 \log \left (3+e^2+x\right )+51 \left (3+e^2\right ) \log \left (3+e^2+x\right )-12 \left (3+e^2\right )^2 \log \left (3+e^2+x\right )+3 e^2 \left (7+6 e^2\right ) \log \left (3+e^2+x\right )+\frac {10 \int \frac {\exp \left (-\frac {5 \left (25+18 e^2+3 e^4+6 \left (3+e^2\right ) x+3 x^2\right )}{x \left (3+e^2+x\right )^2}\right )}{\left (3+e^2+x\right )^2} \, dx}{\left (3+e^2\right )^2}+\frac {20 \int \frac {\exp \left (-\frac {5 \left (25+18 e^2+3 e^4+6 \left (3+e^2\right ) x+3 x^2\right )}{x \left (3+e^2+x\right )^2}\right )}{\left (3+e^2+x\right )^3} \, dx}{3+e^2}+\frac {\left (5 \left (25+18 e^2+3 e^4\right )\right ) \int \frac {\exp \left (-\frac {5 \left (25+18 e^2+3 e^4+6 \left (3+e^2\right ) x+3 x^2\right )}{x \left (3+e^2+x\right )^2}\right )}{x^2} \, dx}{\left (3+e^2\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 45, normalized size = 1.67 \begin {gather*} e^{-\frac {5 \left (25+3 e^4+18 x+3 x^2+6 e^2 (3+x)\right )}{x \left (3+e^2+x\right )^2}}+x-x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 60, normalized size = 2.22 \begin {gather*} -x^{2} + x + e^{\left (-\frac {5 \, {\left (3 \, x^{2} + 6 \, {\left (x + 3\right )} e^{2} + 18 \, x + 3 \, e^{4} + 25\right )}}{x^{3} + 6 \, x^{2} + x e^{4} + 2 \, {\left (x^{2} + 3 \, x\right )} e^{2} + 9 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.77, size = 58, normalized size = 2.15
method | result | size |
risch | \(-x^{2}+x +{\mathrm e}^{-\frac {5 \left (6 \,{\mathrm e}^{2} x +3 x^{2}+18 \,{\mathrm e}^{2}+3 \,{\mathrm e}^{4}+18 x +25\right )}{x \left (2 \,{\mathrm e}^{2} x +x^{2}+6 \,{\mathrm e}^{2}+{\mathrm e}^{4}+6 x +9\right )}}\) | \(58\) |
norman | \(\frac {x^{3} {\mathrm e}^{\frac {-15 \,{\mathrm e}^{4}+\left (-30 x -90\right ) {\mathrm e}^{2}-15 x^{2}-90 x -125}{x \,{\mathrm e}^{4}+\left (2 x^{2}+6 x \right ) {\mathrm e}^{2}+x^{3}+6 x^{2}+9 x}}+\left (-5-2 \,{\mathrm e}^{2}\right ) x^{4}+\left (2 \,{\mathrm e}^{6}+15 \,{\mathrm e}^{4}+36 \,{\mathrm e}^{2}+27\right ) x^{2}+\left ({\mathrm e}^{8}+10 \,{\mathrm e}^{6}+36 \,{\mathrm e}^{4}+54 \,{\mathrm e}^{2}+27\right ) x +\left (2 \,{\mathrm e}^{2}+6\right ) x^{2} {\mathrm e}^{\frac {-15 \,{\mathrm e}^{4}+\left (-30 x -90\right ) {\mathrm e}^{2}-15 x^{2}-90 x -125}{x \,{\mathrm e}^{4}+\left (2 x^{2}+6 x \right ) {\mathrm e}^{2}+x^{3}+6 x^{2}+9 x}}+\left (6 \,{\mathrm e}^{2}+{\mathrm e}^{4}+9\right ) x \,{\mathrm e}^{\frac {-15 \,{\mathrm e}^{4}+\left (-30 x -90\right ) {\mathrm e}^{2}-15 x^{2}-90 x -125}{x \,{\mathrm e}^{4}+\left (2 x^{2}+6 x \right ) {\mathrm e}^{2}+x^{3}+6 x^{2}+9 x}}-x^{5}}{x \left (3+{\mathrm e}^{2}+x \right )^{2}}\) | \(274\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.43, size = 873, normalized size = 32.33 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.70, size = 217, normalized size = 8.04 \begin {gather*} x-x^2+{\mathrm {e}}^{-\frac {15\,x^2}{9\,x+6\,x\,{\mathrm {e}}^2+x\,{\mathrm {e}}^4+2\,x^2\,{\mathrm {e}}^2+6\,x^2+x^3}}\,{\mathrm {e}}^{-\frac {30\,x\,{\mathrm {e}}^2}{9\,x+6\,x\,{\mathrm {e}}^2+x\,{\mathrm {e}}^4+2\,x^2\,{\mathrm {e}}^2+6\,x^2+x^3}}\,{\mathrm {e}}^{-\frac {125}{9\,x+6\,x\,{\mathrm {e}}^2+x\,{\mathrm {e}}^4+2\,x^2\,{\mathrm {e}}^2+6\,x^2+x^3}}\,{\mathrm {e}}^{-\frac {15\,{\mathrm {e}}^4}{9\,x+6\,x\,{\mathrm {e}}^2+x\,{\mathrm {e}}^4+2\,x^2\,{\mathrm {e}}^2+6\,x^2+x^3}}\,{\mathrm {e}}^{-\frac {90\,{\mathrm {e}}^2}{9\,x+6\,x\,{\mathrm {e}}^2+x\,{\mathrm {e}}^4+2\,x^2\,{\mathrm {e}}^2+6\,x^2+x^3}}\,{\mathrm {e}}^{-\frac {90\,x}{9\,x+6\,x\,{\mathrm {e}}^2+x\,{\mathrm {e}}^4+2\,x^2\,{\mathrm {e}}^2+6\,x^2+x^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.49, size = 60, normalized size = 2.22 \begin {gather*} - x^{2} + x + e^{\frac {- 15 x^{2} - 90 x + \left (- 30 x - 90\right ) e^{2} - 15 e^{4} - 125}{x^{3} + 6 x^{2} + 9 x + x e^{4} + \left (2 x^{2} + 6 x\right ) e^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________