3.411 \(\int (a+b \cos (d+e x)+c \sin (d+e x))^{3/2} \, dx\)

Optimal. Leaf size=283 \[ -\frac{2 \left (a^2-b^2-c^2\right ) \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}} \text{EllipticF}\left (\frac{1}{2} \left (-\tan ^{-1}(b,c)+d+e x\right ),\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{3 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{8 a \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{3 e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{3 e} \]

[Out]

(-2*(c*Cos[d + e*x] - b*Sin[d + e*x])*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(3*e) + (8*a*EllipticE[(d + e
*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(3
*e*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]) - (2*(a^2 - b^2 - c^2)*EllipticF[(d + e*
x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a
+ Sqrt[b^2 + c^2])])/(3*e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.281805, antiderivative size = 283, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {3120, 3149, 3119, 2653, 3127, 2661} \[ -\frac{2 \left (a^2-b^2-c^2\right ) \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}} F\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{3 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{8 a \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{3 e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{3 e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(3/2),x]

[Out]

(-2*(c*Cos[d + e*x] - b*Sin[d + e*x])*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(3*e) + (8*a*EllipticE[(d + e
*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(3
*e*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]) - (2*(a^2 - b^2 - c^2)*EllipticF[(d + e*
x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a
+ Sqrt[b^2 + c^2])])/(3*e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])

Rule 3120

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> -Simp[((c*Cos[d
+ e*x] - b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1))/(e*n), x] + Dist[1/n, Int[Simp[n*a^2 +
 (n - 1)*(b^2 + c^2) + a*b*(2*n - 1)*Cos[d + e*x] + a*c*(2*n - 1)*Sin[d + e*x], x]*(a + b*Cos[d + e*x] + c*Sin
[d + e*x])^(n - 2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && GtQ[n, 1]

Rule 3149

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.)
 + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[B/b, Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]
, x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{a, b, c, d, e
, A, B, C}, x] && EqQ[B*c - b*C, 0] && NeQ[A*b - a*B, 0]

Rule 3119

Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*C
os[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])], Int[Sqrt[a/(a
 + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3127

Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a +
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], Int[1/Sqrt[
a/(a + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; Free
Q[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int (a+b \cos (d+e x)+c \sin (d+e x))^{3/2} \, dx &=-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{3 e}+\frac{2}{3} \int \frac{\frac{1}{2} \left (3 a^2+b^2+c^2\right )+2 a b \cos (d+e x)+2 a c \sin (d+e x)}{\sqrt{a+b \cos (d+e x)+c \sin (d+e x)}} \, dx\\ &=-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{3 e}+\frac{1}{3} (4 a) \int \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} \, dx+\frac{1}{3} \left (-a^2+b^2+c^2\right ) \int \frac{1}{\sqrt{a+b \cos (d+e x)+c \sin (d+e x)}} \, dx\\ &=-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{3 e}+\frac{\left (4 a \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}\right ) \int \sqrt{\frac{a}{a+\sqrt{b^2+c^2}}+\frac{\sqrt{b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}{a+\sqrt{b^2+c^2}}} \, dx}{3 \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}+\frac{\left (\left (-a^2+b^2+c^2\right ) \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+\sqrt{b^2+c^2}}+\frac{\sqrt{b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}{a+\sqrt{b^2+c^2}}}} \, dx}{3 \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}\\ &=-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{3 e}+\frac{8 a E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{3 e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}-\frac{2 \left (a^2-b^2-c^2\right ) F\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right ) \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}{3 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}\\ \end{align*}

Mathematica [C]  time = 6.28603, size = 2190, normalized size = 7.74 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(3/2),x]

[Out]

(((8*a*b)/(3*c) - (2*c*Cos[d + e*x])/3 + (2*b*Sin[d + e*x])/3)*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/e +
(2*a^2*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*
(1 - a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(
-1 - a/(Sqrt[1 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^
2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*
x + ArcTan[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*
Sqrt[(b^2 + c^2)/c^2])])/(Sqrt[1 + b^2/c^2]*c*e) + (2*b^2*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2
]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]
*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c
]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)
/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b
^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)/c^2])])/(3*Sqrt[1 + b^2/c^2]*c*e) + (2*c*A
ppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(
Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(
Sqrt[1 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*
Sin[d + e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcT
an[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^
2 + c^2)/c^2])])/(3*Sqrt[1 + b^2/c^2]*e) + (4*a*b^2*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^
2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2
/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[
c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]
)/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^
2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*
(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 +
 c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(3*c*e) + (4*a*c*(-((c*AppellF1[-1/2, -
1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 +
 c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 +
 c^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 +
c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d +
e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a +
b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin
[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(3*
e)

________________________________________________________________________________________

Maple [B]  time = 7.295, size = 1516, normalized size = 5.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(e*x+d)+c*sin(e*x+d))^(3/2),x)

[Out]

(-(-b^2*sin(e*x+d-arctan(-b,c))-c^2*sin(e*x+d-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(e*x+d-arctan(-b,c))^2/(b^2+
c^2)^(1/2))^(1/2)*((b^2+c^2)*(-2/3/(b^2+c^2)^(1/2)*(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arcta
n(-b,c))+a))^(1/2)+2/3*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/
2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)
))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b
,c))+a))^(1/2)*EllipticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^
2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))-4/3/(b^2+c^2)^(1/2)*a*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x
+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/
2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2
*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*((-1/(b^2+c^2)^(1/2)*a-1)*EllipticE(((-(b^2+c^2)^(1/2)*sin
(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF
(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(
1/2)))^(1/2))))+4*a*(b^2+c^2)^(1/2)*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+
(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d
-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*
x+d-arctan(-b,c))+a))^(1/2)*((-1/(b^2+c^2)^(1/2)*a-1)*EllipticE(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/
(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF(((-(b^2+c^2)^(1/2)*sin(
e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2)))+2*a^2*(1/
(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-ar
ctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^
2+c^2)^(1/2)))^(1/2)/(-(-b^2*sin(e*x+d-arctan(-b,c))-c^2*sin(e*x+d-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(e*x+d-
arctan(-b,c))^2/(b^2+c^2)^(1/2))^(1/2)*EllipticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(
1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2)))/cos(e*x+d-arctan(-b,c))/((b^2*sin(e*x+d-arctan(
-b,c))+c^2*sin(e*x+d-arctan(-b,c))+a*(b^2+c^2)^(1/2))/(b^2+c^2)^(1/2))^(1/2)/e

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a\right )}^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(e*x + d) + c*sin(e*x + d) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a\right )}^{\frac{3}{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(3/2),x, algorithm="fricas")

[Out]

integral((b*cos(e*x + d) + c*sin(e*x + d) + a)^(3/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a\right )}^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(e*x + d) + c*sin(e*x + d) + a)^(3/2), x)