3.410 \(\int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx\)

Optimal. Leaf size=347 \[ -\frac{16 a \left (a^2-b^2-c^2\right ) \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}} \text{EllipticF}\left (\frac{1}{2} \left (-\tan ^{-1}(b,c)+d+e x\right ),\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{15 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{2 \left (23 a^2+9 \left (b^2+c^2\right )\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{15 e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}-\frac{16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{15 e} \]

[Out]

(-16*(a*c*Cos[d + e*x] - a*b*Sin[d + e*x])*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(15*e) - (2*(c*Cos[d + e
*x] - b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(3/2))/(5*e) + (2*(23*a^2 + 9*(b^2 + c^2))*Ellipti
cE[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[d + e*x] + c*Sin[d +
e*x]])/(15*e*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]) - (16*a*(a^2 - b^2 - c^2)*Elli
pticF[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[d + e*x] + c*Sin[
d + e*x])/(a + Sqrt[b^2 + c^2])])/(15*e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.531804, antiderivative size = 347, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {3120, 3146, 3149, 3119, 2653, 3127, 2661} \[ -\frac{16 a \left (a^2-b^2-c^2\right ) \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}} F\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{15 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}+\frac{2 \left (23 a^2+9 \left (b^2+c^2\right )\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{15 e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}-\frac{16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{15 e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(5/2),x]

[Out]

(-16*(a*c*Cos[d + e*x] - a*b*Sin[d + e*x])*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(15*e) - (2*(c*Cos[d + e
*x] - b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(3/2))/(5*e) + (2*(23*a^2 + 9*(b^2 + c^2))*Ellipti
cE[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[d + e*x] + c*Sin[d +
e*x]])/(15*e*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]) - (16*a*(a^2 - b^2 - c^2)*Elli
pticF[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[(a + b*Cos[d + e*x] + c*Sin[
d + e*x])/(a + Sqrt[b^2 + c^2])])/(15*e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])

Rule 3120

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> -Simp[((c*Cos[d
+ e*x] - b*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1))/(e*n), x] + Dist[1/n, Int[Simp[n*a^2 +
 (n - 1)*(b^2 + c^2) + a*b*(2*n - 1)*Cos[d + e*x] + a*c*(2*n - 1)*Sin[d + e*x], x]*(a + b*Cos[d + e*x] + c*Sin
[d + e*x])^(n - 2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && GtQ[n, 1]

Rule 3146

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[((B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x
])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^n)/(a*e*(n + 1)), x] + Dist[1/(a*(n + 1)), Int[(a + b*Cos[d + e*x] +
c*Sin[d + e*x])^(n - 1)*Simp[a*(b*B + c*C)*n + a^2*A*(n + 1) + (n*(a^2*B - B*c^2 + b*c*C) + a*b*A*(n + 1))*Cos
[d + e*x] + (n*(b*B*c + a^2*C - b^2*C) + a*c*A*(n + 1))*Sin[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A, B
, C}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0]

Rule 3149

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.)
 + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[B/b, Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]
, x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{a, b, c, d, e
, A, B, C}, x] && EqQ[B*c - b*C, 0] && NeQ[A*b - a*B, 0]

Rule 3119

Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*C
os[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])], Int[Sqrt[a/(a
 + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3127

Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a +
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], Int[1/Sqrt[
a/(a + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; Free
Q[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int (a+b \cos (d+e x)+c \sin (d+e x))^{5/2} \, dx &=-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}+\frac{2}{5} \int \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} \left (\frac{1}{2} \left (5 a^2+3 \left (b^2+c^2\right )\right )+4 a b \cos (d+e x)+4 a c \sin (d+e x)\right ) \, dx\\ &=-\frac{16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{15 e}-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}+\frac{4 \int \frac{\frac{1}{4} a^2 \left (15 a^2+17 \left (b^2+c^2\right )\right )+\frac{1}{4} a b \left (23 a^2+9 \left (b^2+c^2\right )\right ) \cos (d+e x)+\frac{1}{4} a c \left (23 a^2+9 \left (b^2+c^2\right )\right ) \sin (d+e x)}{\sqrt{a+b \cos (d+e x)+c \sin (d+e x)}} \, dx}{15 a}\\ &=-\frac{16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{15 e}-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}-\frac{1}{15} \left (8 a \left (a^2-b^2-c^2\right )\right ) \int \frac{1}{\sqrt{a+b \cos (d+e x)+c \sin (d+e x)}} \, dx+\frac{1}{15} \left (23 a^2+9 \left (b^2+c^2\right )\right ) \int \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} \, dx\\ &=-\frac{16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{15 e}-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}+\frac{\left (\left (23 a^2+9 \left (b^2+c^2\right )\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}\right ) \int \sqrt{\frac{a}{a+\sqrt{b^2+c^2}}+\frac{\sqrt{b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}{a+\sqrt{b^2+c^2}}} \, dx}{15 \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}-\frac{\left (8 a \left (a^2-b^2-c^2\right ) \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+\sqrt{b^2+c^2}}+\frac{\sqrt{b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}{a+\sqrt{b^2+c^2}}}} \, dx}{15 \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}\\ &=-\frac{16 (a c \cos (d+e x)-a b \sin (d+e x)) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{15 e}-\frac{2 (c \cos (d+e x)-b \sin (d+e x)) (a+b \cos (d+e x)+c \sin (d+e x))^{3/2}}{5 e}+\frac{2 \left (23 a^2+9 \left (b^2+c^2\right )\right ) E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{15 e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}-\frac{16 a \left (a^2-b^2-c^2\right ) F\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right ) \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}{15 e \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}\\ \end{align*}

Mathematica [C]  time = 6.59523, size = 3767, normalized size = 10.86 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(5/2),x]

[Out]

(Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]*((2*b*(23*a^2 + 9*b^2 + 9*c^2))/(15*c) - (22*a*c*Cos[d + e*x])/15 -
 (2*b*c*Cos[2*(d + e*x)])/5 + (22*a*b*Sin[d + e*x])/15 + ((b^2 - c^2)*Sin[2*(d + e*x)])/5))/e + (2*a^3*AppellF
1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1
 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1
 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d
+ e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c
]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^
2)/c^2])])/(Sqrt[1 + b^2/c^2]*c*e) + (34*a*b^2*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d +
 e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d +
e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*
Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqr
t[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c
^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)/c^2])])/(15*Sqrt[1 + b^2/c^2]*c*e) + (34*a*c*AppellF1
[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1
+ b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1
+ b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d +
 e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]
]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2
)/c^2])])/(15*Sqrt[1 + b^2/c^2]*e) + (23*a^2*b^2*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b
^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^
2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b
]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(
a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 +
 c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a
+ b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^
2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(15*c*e) + (3*b^4*(-((c*AppellF1[-1/2, -1/
2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c
^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c
^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^
2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*
x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*
Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d
 + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(5*c*
e) + (23*a^2*c*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b
*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*
Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*S
qrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt
[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^
2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x
- ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b
^2]*Cos[d + e*x - ArcTan[c/b]]]))/(15*e) + (6*b^2*c*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^
2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2
/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[
c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]
)/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^
2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*
(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 +
 c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(5*e) + (3*c^3*(-((c*AppellF1[-1/2, -1/
2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c
^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c
^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^
2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*
x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*
Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d
 + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/(5*e)

________________________________________________________________________________________

Maple [B]  time = 10.443, size = 2303, normalized size = 6.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x)

[Out]

(-(-b^2*sin(e*x+d-arctan(-b,c))-c^2*sin(e*x+d-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(e*x+d-arctan(-b,c))^2/(b^2+
c^2)^(1/2))^(1/2)*((b^2+c^2)^(3/2)*(-2/5/(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))*(cos(e*x+d-arctan(-b,c))^2*((
b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)+8/15/(b^2+c^2)*a*(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*
sin(e*x+d-arctan(-b,c))+a))^(1/2)+4/15/(b^2+c^2)^(1/2)*a*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-
arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2))
)^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2*((
b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*EllipticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(
b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+2*(3/5+8/15/(b^2+c^2)*a^2)*(1/(b^2+c^2
)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,
c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(
1/2)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*((-1/(b^2+c^2)^(1/2
)*a-1)*EllipticE(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2)
)/(a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1
/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))))+(3*a*b^2+3*a*c^2)*(-2/3/(b^2+c^2)^(1/2)*(cos(e*x+d-arct
an(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)+2/3*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*
sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c
^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos(e*x+d-arctan(-
b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*EllipticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c)
)-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))-4/3/(b^2+c^2)^(1/2)*a*(1/(b^
2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arcta
n(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c
^2)^(1/2)))^(1/2)/(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*((-1/(b^2+c^2)
^(1/2)*a-1)*EllipticE(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^
(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)
))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))))+6*a^2*(b^2+c^2)^(1/2)*(1/(b^2+c^2)^(1/2)*a-1)*((-(
b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^
(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(cos
(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)*((-1/(b^2+c^2)^(1/2)*a-1)*EllipticE(
((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1
/2)))^(1/2))+EllipticF(((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)
^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2)))+2*a^3*(1/(b^2+c^2)^(1/2)*a-1)*((-(b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))-
a)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((-sin(e*x+d-arctan(-b,c))+1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+si
n(e*x+d-arctan(-b,c)))*(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)/(-(-b^2*sin(e*x+d-arctan(-b,c))-c^2*sin(e*x
+d-arctan(-b,c))-a*(b^2+c^2)^(1/2))*cos(e*x+d-arctan(-b,c))^2/(b^2+c^2)^(1/2))^(1/2)*EllipticF(((-(b^2+c^2)^(1
/2)*sin(e*x+d-arctan(-b,c))-a)/(-a+(b^2+c^2)^(1/2)))^(1/2),((a-(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2)))/c
os(e*x+d-arctan(-b,c))/((b^2*sin(e*x+d-arctan(-b,c))+c^2*sin(e*x+d-arctan(-b,c))+a*(b^2+c^2)^(1/2))/(b^2+c^2)^
(1/2))^(1/2)/e

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a\right )}^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*cos(e*x + d) + c*sin(e*x + d) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (2 \, a b \cos \left (e x + d\right ) +{\left (b^{2} - c^{2}\right )} \cos \left (e x + d\right )^{2} + a^{2} + c^{2} + 2 \,{\left (b c \cos \left (e x + d\right ) + a c\right )} \sin \left (e x + d\right )\right )} \sqrt{b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x, algorithm="fricas")

[Out]

integral((2*a*b*cos(e*x + d) + (b^2 - c^2)*cos(e*x + d)^2 + a^2 + c^2 + 2*(b*c*cos(e*x + d) + a*c)*sin(e*x + d
))*sqrt(b*cos(e*x + d) + c*sin(e*x + d) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(5/2),x, algorithm="giac")

[Out]

Timed out