3.412 \(\int \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} \, dx\)

Optimal. Leaf size=108 \[ \frac{2 \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}} \]

[Out]

(2*EllipticE[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[d + e*x] +
c*Sin[d + e*x]])/(e*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])])

________________________________________________________________________________________

Rubi [A]  time = 0.0708033, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {3119, 2653} \[ \frac{2 \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right )}{e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]],x]

[Out]

(2*EllipticE[(d + e*x - ArcTan[b, c])/2, (2*Sqrt[b^2 + c^2])/(a + Sqrt[b^2 + c^2])]*Sqrt[a + b*Cos[d + e*x] +
c*Sin[d + e*x]])/(e*Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])])

Rule 3119

Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*C
os[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])], Int[Sqrt[a/(a
 + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]])/(a + Sqrt[b^2 + c^2])], x], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \sqrt{a+b \cos (d+e x)+c \sin (d+e x)} \, dx &=\frac{\sqrt{a+b \cos (d+e x)+c \sin (d+e x)} \int \sqrt{\frac{a}{a+\sqrt{b^2+c^2}}+\frac{\sqrt{b^2+c^2} \cos \left (d+e x-\tan ^{-1}(b,c)\right )}{a+\sqrt{b^2+c^2}}} \, dx}{\sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}\\ &=\frac{2 E\left (\frac{1}{2} \left (d+e x-\tan ^{-1}(b,c)\right )|\frac{2 \sqrt{b^2+c^2}}{a+\sqrt{b^2+c^2}}\right ) \sqrt{a+b \cos (d+e x)+c \sin (d+e x)}}{e \sqrt{\frac{a+b \cos (d+e x)+c \sin (d+e x)}{a+\sqrt{b^2+c^2}}}}\\ \end{align*}

Mathematica [C]  time = 6.27412, size = 1408, normalized size = 13.04 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]],x]

[Out]

(2*b*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(c*e) + (2*a*AppellF1[1/2, 1/2, 1/2, 3/2, -((a + Sqrt[1 + b^2/
c^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(1 - a/(Sqrt[1 + b^2/c^2]*c))*c)), -((a + Sqrt[1 + b^2/c
^2]*c*Sin[d + e*x + ArcTan[b/c]])/(Sqrt[1 + b^2/c^2]*(-1 - a/(Sqrt[1 + b^2/c^2]*c))*c))]*Sec[d + e*x + ArcTan[
b/c]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] - c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(a + c*Sqrt[(b^2 + c
^2)/c^2])]*Sqrt[a + c*Sqrt[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]]]*Sqrt[(c*Sqrt[(b^2 + c^2)/c^2] + c*Sqrt
[(b^2 + c^2)/c^2]*Sin[d + e*x + ArcTan[b/c]])/(-a + c*Sqrt[(b^2 + c^2)/c^2])])/(Sqrt[1 + b^2/c^2]*c*e) + (b^2*
(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b
^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^
2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)
/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c^2)/b^2])]*Sqrt[a + b*Sqrt[(b^
2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x
- ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]])
)/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x
 - ArcTan[c/b]]]))/(c*e) + (c*(-((c*AppellF1[-1/2, -1/2, -1/2, 1/2, -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - A
rcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(1 - a/(b*Sqrt[1 + c^2/b^2])))), -((a + b*Sqrt[1 + c^2/b^2]*Cos[d + e*x - Ar
cTan[c/b]])/(b*Sqrt[1 + c^2/b^2]*(-1 - a/(b*Sqrt[1 + c^2/b^2]))))]*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2
/b^2]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] - b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(a + b*Sqrt[(b^2 + c
^2)/b^2])]*Sqrt[a + b*Sqrt[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]]]*Sqrt[(b*Sqrt[(b^2 + c^2)/b^2] + b*Sqrt
[(b^2 + c^2)/b^2]*Cos[d + e*x - ArcTan[c/b]])/(-a + b*Sqrt[(b^2 + c^2)/b^2])])) - ((2*b*(a + b*Sqrt[1 + c^2/b^
2]*Cos[d + e*x - ArcTan[c/b]]))/(b^2 + c^2) - (c*Sin[d + e*x - ArcTan[c/b]])/(b*Sqrt[1 + c^2/b^2]))/Sqrt[a + b
*Sqrt[1 + c^2/b^2]*Cos[d + e*x - ArcTan[c/b]]]))/e

________________________________________________________________________________________

Maple [B]  time = 3.265, size = 720, normalized size = 6.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(e*x+d)+c*sin(e*x+d))^(1/2),x)

[Out]

-2/(b^2+c^2)^(1/2)*(-a+(b^2+c^2)^(1/2))*(-((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a)/(-a+(b^2+c^2)^(1/2)))^(1
/2)*(-(sin(e*x+d-arctan(-b,c))-1)*(b^2+c^2)^(1/2)/(a+(b^2+c^2)^(1/2)))^(1/2)*((1+sin(e*x+d-arctan(-b,c)))*(b^2
+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2)))^(1/2)*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))*cos(e*x+d-arctan(-b,c))^2+cos
(e*x+d-arctan(-b,c))^2*a)^(1/2)*((b^2+c^2)^(1/2)*EllipticF((-(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2))*sin(e*x+d-ar
ctan(-b,c))-a/(-a+(b^2+c^2)^(1/2)))^(1/2),(-(-a+(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))-(b^2+c^2)^(1/2)*E
llipticE((-(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2))*sin(e*x+d-arctan(-b,c))-a/(-a+(b^2+c^2)^(1/2)))^(1/2),(-(-a+(b
^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))+EllipticF((-(b^2+c^2)^(1/2)/(-a+(b^2+c^2)^(1/2))*sin(e*x+d-arctan(-
b,c))-a/(-a+(b^2+c^2)^(1/2)))^(1/2),(-(-a+(b^2+c^2)^(1/2))/(a+(b^2+c^2)^(1/2)))^(1/2))*a-EllipticE((-(b^2+c^2)
^(1/2)/(-a+(b^2+c^2)^(1/2))*sin(e*x+d-arctan(-b,c))-a/(-a+(b^2+c^2)^(1/2)))^(1/2),(-(-a+(b^2+c^2)^(1/2))/(a+(b
^2+c^2)^(1/2)))^(1/2))*a)/(cos(e*x+d-arctan(-b,c))^2*((b^2+c^2)^(1/2)*sin(e*x+d-arctan(-b,c))+a))^(1/2)/cos(e*
x+d-arctan(-b,c))/((b^2*sin(e*x+d-arctan(-b,c))+c^2*sin(e*x+d-arctan(-b,c))+a*(b^2+c^2)^(1/2))/(b^2+c^2)^(1/2)
)^(1/2)/e

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*cos(e*x + d) + c*sin(e*x + d) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(e*x + d) + c*sin(e*x + d) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \cos{\left (d + e x \right )} + c \sin{\left (d + e x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))**(1/2),x)

[Out]

Integral(sqrt(a + b*cos(d + e*x) + c*sin(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \cos \left (e x + d\right ) + c \sin \left (e x + d\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(e*x+d)+c*sin(e*x+d))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*cos(e*x + d) + c*sin(e*x + d) + a), x)