2.7 HW7

  2.7.1 Section 3.6 problem 1
  2.7.2 Section 3.6 problem 2
  2.7.3 Section 3.6 problem 3
  2.7.4 Section 3.6 problem 4
  2.7.5 Section 3.6 problem 5
  2.7.6 Section 3.6 problem 6
  2.7.7 Section 3.6 problem 7
  2.7.8 Section 3.6 problem 8
PDF (letter size)
PDF (legal size)

2.7.1 Section 3.6 problem 1

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. \(y^{\prime \prime }-5y^{\prime }+6y=2e^{t}\)

solution

The general solution is \[ y=y_{h}+y_{p}\] Where \(y_{h}\) is the solution to the homogenous ode \(y^{\prime \prime }-5y^{\prime }+6y=0\) and \(y_{p}\) is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding \(y_{h}\)

Since ODE has constant coefficients, then the characteristic equation is used. It is given by \(r^{2}-5r+6=0\) or \(\left ( r-3\right ) \left ( r-2\right ) =0.\) Therefore the roots are \(r_{1}=3,r_{2}=2\). Hence the two fundamental solutions are \begin{align*} y_{1} & =e^{3t}\\ y_{2} & =e^{2t} \end{align*}

And the homogenous solution is therefore given by\begin{align*} y_{h} & =c_{1}y_{1}+c_{2}y_{2}\\ & =c_{1}e^{3t}+c_{2}e^{2t} \end{align*}

Finding \(y_{p}\) using variation of parameters

First step is to find Wronskian \(W\) given by\[ W\left ( t\right ) =\begin{vmatrix} y_{1} & y_{2}\\ y_{1}^{\prime } & y_{2}^{\prime }\end{vmatrix} =\begin{vmatrix} e^{3t} & e^{2t}\\ 3e^{3t} & 2e^{2t}\end{vmatrix} =2e^{5t}-3e^{5t}=-e^{5t}\] Letting \(g\left ( t\right ) =2e^{t}\) therefore the particular solution is\[ y_{p}\left ( t\right ) =u_{1}\left ( t\right ) y_{1}\left ( t\right ) +u_{2}\left ( t\right ) y_{2}\left ( t\right ) \] Where\[ u_{1}\left ( t\right ) =-\int \frac{y_{2}\left ( t\right ) g\left ( t\right ) }{W}dt=-\int \frac{e^{2t}2e^{t}}{-e^{5t}}dt=2\int \frac{e^{3t}}{e^{5t}}dt=2\int e^{-2t}dt=2\left [ \frac{e^{-2t}}{-2}\right ] =-e^{-2t}\] And\[ u_{2}\left ( t\right ) =\int \frac{y_{1}\left ( t\right ) g\left ( t\right ) }{W}dt=\int \frac{e^{3t}2e^{t}}{-e^{5t}}dt=-2\int \frac{e^{4t}}{e^{5t}}dt=-2\int e^{-t}dt=-2\left [ \frac{e^{-t}}{-1}\right ] =2e^{-t}\] Hence the particular solution becomes\begin{align*} y_{p} & =u_{1}y_{1}+u_{2}y_{2}\\ & =\left ( -e^{-2t}\right ) e^{3t}+2e^{-t}e^{2t}\\ & =-e^{t}+2e^{t}\\ & =e^{t} \end{align*}

Therefore the general solution is\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}e^{3t}+c_{2}e^{2t}+e^{t} \end{align*}

Finding \(y_{p}\) using undetermined coefficients

From the form of \(g\left ( t\right ) \) in the problem, particular solution is assumed to be\[ y_{p}=Ae^{t}\] Hence\begin{align*} y_{p}^{\prime } & =Ae^{t}\\ y_{p}^{\prime \prime } & =Ae^{t} \end{align*}

Plugging back into the original ODE gives\begin{align*} y_{p}^{\prime \prime }-5y_{p}^{\prime }+6y_{p} & =2e^{t}\\ Ae^{t}-5Ae^{t}+6Ae^{t} & =2e^{t} \end{align*}

Dividing by \(e^{t}\neq 0\) gives\begin{align*} A-5A+6A & =2\\ 2A & =2\\ A & =1 \end{align*}

Therefore\[ y_{p}=e^{t}\] Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

2.7.2 Section 3.6 problem 2

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. \(y^{\prime \prime }-y^{\prime }-2y=2e^{-t}\)

solution

The general solution is \[ y=y_{h}+y_{p}\] Where \(y_{h}\) is the solution to the homogenous ode \(y^{\prime \prime }-y^{\prime }-2y=0\) and \(y_{p}\) is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding \(y_{h}\)

Since ODE has constant coefficients, then the characteristic equation is used. It is given by \(r^{2}-r-2=0\) or \(\left ( r+1\right ) \left ( r-2\right ) =0.\) Therefore the roots are \(r_{1}=-1,r_{2}=2\). Hence the two fundamental solutions are \begin{align*} y_{1} & =e^{-t}\\ y_{2} & =e^{2t} \end{align*}

And the homogenous solution is therefore given by\begin{align*} y_{h} & =c_{1}y_{1}+c_{2}y_{2}\\ & =c_{1}e^{-t}+c_{2}e^{2t} \end{align*}

Finding \(y_{p}\) using variation of parameters

First step is to find Wronskian \(W\) given by\[ W\left ( t\right ) =\begin{vmatrix} y_{1} & y_{2}\\ y_{1}^{\prime } & y_{2}^{\prime }\end{vmatrix} =\begin{vmatrix} e^{-t} & e^{2t}\\ -e^{-t} & 2e^{2t}\end{vmatrix} =2e^{t}+e^{t}=3e^{t}\] Letting \(g\left ( t\right ) =2e^{-t}\) therefore the particular solution is\[ y_{p}\left ( t\right ) =u_{1}\left ( t\right ) y_{1}\left ( t\right ) +u_{2}\left ( t\right ) y_{2}\left ( t\right ) \] Where\[ u_{1}\left ( t\right ) =-\int \frac{y_{2}\left ( t\right ) g\left ( t\right ) }{W}dt=-\int \frac{e^{2t}2e^{-t}}{3e^{t}}dt=-\frac{2}{3}\int \frac{e^{t}}{e^{t}}dt=-\frac{2}{3}t \] And\[ u_{2}\left ( t\right ) =\int \frac{y_{1}\left ( t\right ) g\left ( t\right ) }{W}dt=\int \frac{e^{-t}2e^{-t}}{3e^{t}}dt=\frac{2}{3}\int \frac{e^{-2t}}{e^{t}}dt=\frac{2}{3}\int e^{-3t}dt=\frac{2}{3}\left [ \frac{e^{-3t}}{-3}\right ] =-\frac{2}{9}e^{-3t}\] Hence the particular solution becomes\begin{align*} y_{p} & =u_{1}y_{1}+u_{2}y_{2}\\ & =\left ( -\frac{2}{3}t\right ) e^{-t}-\frac{2}{9}e^{-3t}e^{2t}\\ & =-\frac{2}{3}te^{-t}-\frac{2}{9}e^{-t} \end{align*}

We notice something here. The extra term \(-\frac{2}{9}e^{-t}\) above is constant times one of the fundamental solutions (one of the solutions to the homogenous equation), which is \(y_{1}\) in this case found earlier. But adding a multiple of a fundamental solution to a particular solution gives another particular solution. So the term \(-\frac{2}{9}e^{-t}\) will be merged with the term from the homogenous solution. Therefore the general solution is\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}e^{-t}+c_{2}e^{2t}-\frac{2}{3}te^{-t}-\frac{2}{9}e^{-t} \end{align*}

We can now combine \(\frac{2}{9}e^{-t}\) that shows up from the particular solution with the \(c_{1}e^{-t}\) term from the homogenous solution, since \(c_{1}\) is arbitrary constant, which simplifies the above to\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}e^{-t}+c_{2}e^{2t}-\frac{2}{3}te^{-t} \end{align*}

Finding \(y_{p}\) using undetermined coefficients

From the form of \(g\left ( t\right ) \) in the problem, and since \(e^{-t}\) is already one of the fundamental solutions, then particular solution is assumed to be\[ y_{p}=Ate^{-t}\] Hence\begin{align*} y_{p}^{\prime } & =A\left ( e^{-t}-te^{-t}\right ) \\ y_{p}^{\prime \prime } & =A\left ( -e^{-t}-e^{-t}+te^{-t}\right ) \\ & =A\left ( -2e^{-t}+te^{-t}\right ) \end{align*}

Plugging back into the original ODE gives\begin{align*} y_{p}^{\prime \prime }-y_{p}^{\prime }-2y_{p} & =2e^{-t}\\ A\left ( -2e^{-t}+te^{-t}\right ) -A\left ( e^{-t}-te^{-t}\right ) -2Ate^{-t} & =2e^{-t} \end{align*}

Dividing by \(e^{-t}\neq 0\) gives\begin{align*} A\left ( -2+t\right ) -A\left ( 1-t\right ) -2At & =2\\ t\left ( A+A-2A\right ) -2A-A & =2\\ -3A & =2\\ A & =\frac{-2}{3} \end{align*}

Therefore\[ y_{p}=\frac{-2}{3}te^{-t}\] Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

2.7.3 Section 3.6 problem 3

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. \(y^{\prime \prime }+2y^{\prime }+y=3e^{-t}\)

solution

The general solution is \[ y=y_{h}+y_{p}\] Where \(y_{h}\) is the solution to the homogenous ode \(y^{\prime \prime }+2y^{\prime }+y=0\) and \(y_{p}\) is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding \(y_{h}\)

Since ODE has constant coefficients, then the characteristic equation is used. It is given by \(r^{2}+2r+1=0\) or \(\left ( r+1\right ) \left ( r+1\right ) =0\), Therefore the roots are duplicate \(r_{1}=-1\). Hence the two fundamental solutions are \begin{align*} y_{1} & =e^{-t}\\ y_{2} & =te^{-t} \end{align*}

And the homogenous solution is therefore given by\begin{align*} y_{h} & =c_{1}y_{1}+c_{2}y_{2}\\ & =c_{1}e^{-t}+c_{2}te^{-t} \end{align*}

Finding \(y_{p}\) using variation of parameters

First step is to find Wronskian \(W\) given by\begin{align*} W\left ( t\right ) & =\begin{vmatrix} y_{1} & y_{2}\\ y_{1}^{\prime } & y_{2}^{\prime }\end{vmatrix} =\begin{vmatrix} e^{-t} & te^{-t}\\ -e^{-t} & e^{-t}-te^{-t}\end{vmatrix} \\ & =\left ( e^{-t}\right ) \left ( e^{-t}-te^{-t}\right ) +\left ( te^{-t}\right ) \left ( e^{-t}\right ) \\ & =e^{-2t}-te^{-2t}+te^{-2t}\\ & =e^{-2t} \end{align*}

Letting \(g\left ( t\right ) =3e^{-t}\) therefore the particular solution is\[ y_{p}\left ( t\right ) =u_{1}\left ( t\right ) y_{1}\left ( t\right ) +u_{2}\left ( t\right ) y_{2}\left ( t\right ) \] Where\[ u_{1}\left ( t\right ) =-\int \frac{y_{2}\left ( t\right ) g\left ( t\right ) }{W}dt=-\int \frac{te^{-t}\left ( 3e^{-t}\right ) }{e^{-2t}}dt=-3\int tdt=-\frac{3}{2}t^{2}\] And\[ u_{2}\left ( t\right ) =\int \frac{y_{1}\left ( t\right ) g\left ( t\right ) }{W}dt=\int \frac{e^{-t}\left ( 3e^{-t}\right ) }{e^{-2t}}dt=3\int dt=3t \] Hence the particular solution becomes\begin{align*} y_{p} & =u_{1}y_{1}+u_{2}y_{2}\\ & =\left ( -\frac{3}{2}t^{2}\right ) e^{-t}+3t\left ( te^{-t}\right ) \\ & =-\frac{3}{2}t^{2}e^{-t}+3t^{2}e^{-t}\\ & =\frac{3}{2}t^{2}e^{-t} \end{align*}

Therefore the general solution is\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}e^{-t}+c_{2}te^{-t}+\frac{3}{2}t^{2}e^{-t} \end{align*}

Finding \(y_{p}\) using undetermined coefficients

From the form of \(g\left ( t\right ) =3e^{-t}\) in the problem, we want to try \(e^{-t}\) but since \(e^{-t}\) is already one of the fundamental solutions, we then look at \(te^{-t}\) but this is also one fundamental solutions, then we look for \(t^{2}e^{-t}\). Hence\[ y_{p}=At^{2}e^{-t}\] Hence\begin{align*} y_{p}^{\prime } & =A\left ( 2te^{-t}-t^{2}e^{-t}\right ) \\ y_{p}^{\prime \prime } & =A\left ( 2e^{-t}-2te^{-t}-\left ( 2te^{-t}-t^{2}e^{-t}\right ) \right ) \\ & =A\left ( 2e^{-t}-2te^{-t}-2te^{-t}+t^{2}e^{-t}\right ) \\ & =A\left ( 2e^{-t}-4te^{-t}+t^{2}e^{-t}\right ) \end{align*}

Plugging back into the original ODE gives\begin{align*} y_{p}^{\prime \prime }+2y_{p}^{\prime }+y_{p} & =3e^{-t}\\ A\left ( 2e^{-t}-4te^{-t}+t^{2}e^{-t}\right ) +2A\left ( 2te^{-t}-t^{2}e^{-t}\right ) +At^{2}e^{-t} & =3e^{-t} \end{align*}

Dividing by \(e^{-t}\neq 0\) gives\begin{align*} A\left ( 2-4t+t^{2}\right ) +2A\left ( 2t-t^{2}\right ) +At^{2} & =3\\ t\left ( -4A+4A\right ) +t^{2}\left ( A-2A+A\right ) +2A & =3\\ A & =\frac{3}{2} \end{align*}

Therefore\[ y_{p}=\frac{3}{2}te^{-t}\] Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

2.7.4 Section 3.6 problem 4

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. \(4y^{\prime \prime }-4y^{\prime }+y=16e^{\frac{t}{2}}\)

solution

The general solution is \[ y=y_{h}+y_{p}\] Where \(y_{h}\) is the solution to the homogenous ode \(4y^{\prime \prime }-4y^{\prime }+y=0\) and \(y_{p}\) is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding \(y_{h}\)

The first step is to put the ODE in standard form, with the coefficient of \(y^{\prime \prime }\) being one. Hence it becomes\[ y^{\prime \prime }-y^{\prime }+\frac{1}{4}y=4e^{\frac{t}{2}}\] Since ODE has constant coefficients, then the characteristic equation is used. It is given by \(r^{2}-r+\frac{1}{4}=0\) or \(\left ( r-\frac{1}{2}\right ) \left ( r-\frac{1}{2}\right ) =0\), Therefore the roots are duplicate \(r=\frac{1}{2}\). Hence the two fundamental solutions are \begin{align*} y_{1} & =e^{\frac{1}{2}t}\\ y_{2} & =te^{\frac{1}{2}t} \end{align*}

And the homogenous solution is therefore given by\begin{align*} y_{h} & =c_{1}y_{1}+c_{2}y_{2}\\ & =c_{1}e^{\frac{1}{2}t}+c_{2}te^{\frac{1}{2}t} \end{align*}

Finding \(y_{p}\) using variation of parameters

First step is to find Wronskian \(W\) given by\begin{align*} W\left ( t\right ) & =\begin{vmatrix} y_{1} & y_{2}\\ y_{1}^{\prime } & y_{2}^{\prime }\end{vmatrix} =\begin{vmatrix} e^{\frac{1}{2}t} & te^{\frac{1}{2}t}\\ \frac{1}{2}e^{\frac{1}{2}t} & e^{\frac{1}{2}t}+\frac{1}{2}te^{\frac{1}{2}t}\end{vmatrix} \\ & =\left ( e^{\frac{1}{2}t}\right ) \left ( e^{\frac{1}{2}t}+\frac{1}{2}te^{\frac{1}{2}t}\right ) -\left ( te^{\frac{1}{2}t}\right ) \left ( \frac{1}{2}e^{\frac{1}{2}t}\right ) \\ & =e^{t}+\frac{1}{2}te^{t}-\frac{1}{2}te^{t}\\ & =e^{t} \end{align*}

Letting \(g\left ( t\right ) =4e^{\frac{t}{2}}\) therefore the particular solution is\[ y_{p}\left ( t\right ) =u_{1}\left ( t\right ) y_{1}\left ( t\right ) +u_{2}\left ( t\right ) y_{2}\left ( t\right ) \] Where\[ u_{1}\left ( t\right ) =-\int \frac{y_{2}\left ( t\right ) g\left ( t\right ) }{W}dt=-\int \frac{te^{\frac{1}{2}t}\left ( 4e^{\frac{t}{2}}\right ) }{e^{t}}dt=-4\int tdt=-2t^{2}\] And\[ u_{2}\left ( t\right ) =\int \frac{y_{1}\left ( t\right ) g\left ( t\right ) }{W}dt=\int \frac{e^{\frac{1}{2}t}\left ( 4e^{\frac{t}{2}}\right ) }{e^{t}}dt=4\int dt=4t \] Hence the particular solution becomes\begin{align*} y_{p} & =u_{1}y_{1}+u_{2}y_{2}\\ & =\left ( -2t^{2}\right ) e^{\frac{1}{2}t}+4t\left ( te^{\frac{1}{2}t}\right ) \\ & =-2t^{2}e^{\frac{1}{2}t}+4t^{2}e^{\frac{1}{2}t}\\ & =2t^{2}e^{\frac{1}{2}t} \end{align*}

Therefore the general solution is\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}e^{\frac{1}{2}t}+c_{2}te^{\frac{1}{2}t}+2t^{2}e^{\frac{1}{2}t} \end{align*}

Finding \(y_{p}\) using undetermined coefficients

From the form of \(g\left ( t\right ) =4e^{\frac{t}{2}}\) in the problem, we want to try \(e^{\frac{t}{2}}\) but since \(e^{\frac{t}{2}}\) is already one of the fundamental solutions, we then look at \(te^{\frac{t}{2}}\) but this is also one fundamental solutions, then we look for \(t^{2}e^{\frac{t}{2}}\). Hence\[ y_{p}=At^{2}e^{\frac{t}{2}}\] Hence\begin{align*} y_{p}^{\prime } & =A\left ( 2te^{\frac{t}{2}}+\frac{1}{2}t^{2}e^{\frac{t}{2}}\right ) \\ y_{p}^{\prime \prime } & =A\left ( 2e^{\frac{t}{2}}+te^{\frac{t}{2}}+te^{\frac{t}{2}}+\frac{1}{4}t^{2}e^{\frac{t}{2}}\right ) \\ & =A\left ( 2e^{\frac{t}{2}}+2te^{\frac{t}{2}}+\frac{1}{4}t^{2}e^{\frac{t}{2}}\right ) \end{align*}

Plugging back into the original ODE gives\begin{align*} y_{p}^{\prime \prime }-y_{p}^{\prime }+\frac{1}{4}y_{p} & =4e^{\frac{t}{2}}\\ A\left ( 2e^{\frac{t}{2}}+2te^{\frac{t}{2}}+\frac{1}{4}t^{2}e^{\frac{t}{2}}\right ) -A\left ( 2te^{\frac{t}{2}}+\frac{1}{2}t^{2}e^{\frac{t}{2}}\right ) +\frac{1}{4}At^{2}e^{\frac{t}{2}} & =4e^{\frac{t}{2}} \end{align*}

Dividing by \(e^{\frac{t}{2}}\neq 0\) gives\begin{align*} A\left ( 2+2t+\frac{1}{4}t^{2}\right ) -A\left ( 2t+\frac{1}{2}t^{2}\right ) +\frac{1}{4}At^{2} & =4\\ t\left ( 2A-2A\right ) +t^{2}\left ( \frac{1}{4}A-\frac{1}{2}A+\frac{1}{4}A\right ) +2A & =4\\ A & =2 \end{align*}

Therefore\[ y_{p}=2t^{2}e^{\frac{t}{2}}\] Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

2.7.5 Section 3.6 problem 5

Find the general solution of \(y^{\prime \prime }+y=\tan t\) for \(0<t<\frac{\pi }{2}\)

solution

The general solution is \[ y=y_{h}+y_{p}\] Where \(y_{h}\) is the solution to the homogenous ode \(y^{\prime \prime }+y=0\) and \(y_{p}\) is a particular solution which is found using variations of parameters.

Finding \(y_{h}\)

Since ODE has constant coefficients, then the characteristic equation is used. It is given by \(r^{2}+1=0\) or \(r=\pm i\). Hence the two fundamental solutions are \begin{align*} y_{1} & =\cos t\\ y_{2} & =\sin t \end{align*}

And the homogenous solution is therefore given by\begin{align*} y_{h} & =c_{1}y_{1}+c_{2}y_{2}\\ & =c_{1}\cos t+c_{2}\sin t \end{align*}

Finding \(y_{p}\) using variation of parameters

First step is to find Wronskian \(W\) given by\[ W\left ( t\right ) =\begin{vmatrix} y_{1} & y_{2}\\ y_{1}^{\prime } & y_{2}^{\prime }\end{vmatrix} =\begin{vmatrix} \cos t & \sin t\\ -\sin t & \cos t \end{vmatrix} =\cos ^{2}t+\sin ^{2}t=1 \] Let \(g\left ( t\right ) =\tan t\), therefore the particular solution is\[ y_{p}\left ( t\right ) =u_{1}\left ( t\right ) y_{1}\left ( t\right ) +u_{2}\left ( t\right ) y_{2}\left ( t\right ) \] Where\begin{align*} u_{1}\left ( t\right ) & =-\int \frac{y_{2}\left ( t\right ) g\left ( t\right ) }{W\left ( t\right ) }dt=-\int \frac{\sin t\tan t}{1}dt=-\int \sin t\frac{\sin t}{\cos t}dt=-\int \frac{\sin ^{2}t}{\cos t}dt\\ & =-\int \frac{1-\cos ^{2}t}{\cos t}dt=\int \frac{\cos ^{2}t-1}{\cos t}dt=\int \cos t-\frac{1}{\cos t}dt\\ & =\int \cos tdt-\int \frac{1}{\cos t}dt\\ & =\sin t-\int \sec tdt\\ & =\sin t-\ln \left ( \sec (t)+\tan (t)\right ) \end{align*}

And\[ u_{2}\left ( t\right ) =\int \frac{y_{1}\left ( t\right ) g\left ( t\right ) }{W\left ( t\right ) }dt=\int \frac{\cos t\tan t}{1}dt=\int \cos t\frac{\sin t}{\cos t}\ dt=\int \sin t\ dt=-\cos t \] Hence the particular solution becomes\begin{align*} y_{p} & =u_{1}y_{1}+u_{2}y_{2}\\ & =\left ( \sin t-\ln \left ( \sec (t)+\tan (t)\right ) \right ) \cos t+\left ( -\cos t\right ) \sin t\\ & =-\cos \left ( t\right ) \ln \left ( \sec (t)+\tan (t)\right ) \end{align*}

Therefore the general solution is\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}\cos t+c_{2}\sin t-\cos \left ( t\right ) \ln \left ( \sec (t)+\tan (t)\right ) \end{align*}

2.7.6 Section 3.6 problem 6

Find the general solution of \(y^{\prime \prime }+9y=9\sec ^{2}3t\) for \(0<t<\frac{\pi }{6}\)

solution

The general solution is \[ y=y_{h}+y_{p}\] Where \(y_{h}\) is the solution to the homogenous ode \(y^{\prime \prime }+9y=0\) and \(y_{p}\) is a particular solution which is found using variations of parameters.

Finding \(y_{h}\)

Since ODE has constant coefficients, then the characteristic equation is used. It is given by \(r^{2}+9=0\) or \(r=\pm 3i\). Hence the two fundamental solutions are \begin{align*} y_{1} & =\cos 3t\\ y_{2} & =\sin 3t \end{align*}

And the homogenous solution is therefore given by\begin{align*} y_{h} & =c_{1}y_{1}+c_{2}y_{2}\\ & =c_{1}\cos 3t+c_{2}\sin 3t \end{align*}

Finding \(y_{p}\) using variation of parameters

First step is to find Wronskian \(W\) given by\[ W\left ( t\right ) =\begin{vmatrix} y_{1} & y_{2}\\ y_{1}^{\prime } & y_{2}^{\prime }\end{vmatrix} =\begin{vmatrix} \cos 3t & \sin 3t\\ -3\sin 3t & 3\cos 3t \end{vmatrix} =3\cos ^{2}t+3\sin ^{2}t=3 \] Let \(g\left ( t\right ) =\frac{9}{\cos ^{2}3t}\), therefore the particular solution is\[ y_{p}\left ( t\right ) =u_{1}\left ( t\right ) y_{1}\left ( t\right ) +u_{2}\left ( t\right ) y_{2}\left ( t\right ) \] Where\[ u_{1}\left ( t\right ) =-\int \frac{y_{2}\left ( t\right ) g\left ( t\right ) }{W\left ( t\right ) }dt=-\int \frac{9\sin \left ( 3t\right ) }{3\cos ^{2}\left ( 3t\right ) }dt=-3\int \frac{\sin \left ( 3t\right ) }{\cos ^{2}\left ( 3t\right ) }dt \] Let \(u=\cos \left ( 3t\right ) \), hence \(\frac{du}{dt}=-3\sin 3t\rightarrow dt=\frac{du}{-3\sin 3t}\) and the above integral becomes\[ u_{1}\left ( t\right ) =-3\int \frac{\sin \left ( 3t\right ) }{u^{2}}\frac{du}{-3\sin 3t}=\int \frac{1}{u^{2}}du=\frac{-1}{u}=\frac{-1}{\cos 3t}=-\sec \left ( 3t\right ) \] And\[ u_{2}\left ( t\right ) =\int \frac{y_{1}\left ( t\right ) g\left ( t\right ) }{W\left ( t\right ) }dt=\int \frac{9\cos 3t}{3\cos ^{2}\left ( 3t\right ) }dt=3\int \frac{1}{\cos \left ( 3t\right ) }\ dt=3\int \sec \left ( 3t\right ) \ dt=\ln \left ( \sec (3t)+\tan (3t)\right ) \] Hence the particular solution becomes\begin{align*} y_{p} & =u_{1}y_{1}+u_{2}y_{2}\\ & =-\sec \left ( 3t\right ) \cos 3t+\ln \left ( \sec (3t)+\tan (3t)\right ) \sin 3t\\ & =-1+\ln \left ( \sec (t)+\tan (t)\right ) \sin 3t \end{align*}

Therefore the general solution is\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}\cos 3t+c_{2}\sin 3t-1+\sin 3t\ln \left ( \sec (t)+\tan (t)\right ) \end{align*}

2.7.7 Section 3.6 problem 7

Find the general solution of \(y^{\prime \prime }+4y^{\prime }+4y=t^{-2}e^{-2t}\) for \(t>0\)

solution

The general solution is \[ y=y_{h}+y_{p}\] Where \(y_{h}\) is the solution to the homogenous ode \(y^{\prime \prime }+4y^{\prime }+4y=0\) and \(y_{p}\) is a particular solution which is found using variations of parameters.

Finding \(y_{h}\)

Since ODE has constant coefficients, then the characteristic equation is used. It is given by \(r^{2}+4r+4=0\) or \(\left ( r+2\right ) \left ( r+2\right ) =0\). Hence double root \(r=-2\) and the fundamental solutions are \begin{align*} y_{1} & =e^{-2t}\\ y_{2} & =te^{-2t} \end{align*}

And the homogenous solution is therefore given by\begin{align*} y_{h} & =c_{1}y_{1}+c_{2}y_{2}\\ & =c_{1}e^{-2t}+c_{2}te^{-2t} \end{align*}

Finding \(y_{p}\) using variation of parameters

First step is to find Wronskian \(W\) given by\begin{align*} W\left ( t\right ) & =\begin{vmatrix} y_{1} & y_{2}\\ y_{1}^{\prime } & y_{2}^{\prime }\end{vmatrix} =\begin{vmatrix} e^{-2t} & te^{-2t}\\ -2e^{-2t} & e^{-2t}-2te^{-2t}\end{vmatrix} =e^{-2t}\left ( e^{-2t}-2te^{-2t}\right ) +2e^{-2t}\left ( te^{-2t}\right ) \\ & =e^{-4t}-2te^{-4t}+2te^{-4t}\\ & =e^{-4t} \end{align*}

Let \(g\left ( t\right ) =t^{-2}e^{-2t}\), therefore the particular solution is\[ y_{p}\left ( t\right ) =u_{1}\left ( t\right ) y_{1}\left ( t\right ) +u_{2}\left ( t\right ) y_{2}\left ( t\right ) \] Where\[ u_{1}\left ( t\right ) =-\int \frac{y_{2}\left ( t\right ) g\left ( t\right ) }{W\left ( t\right ) }dt=-\int \frac{te^{-2t}t^{-2}e^{-2t}}{e^{-4t}}dt=-\int t^{-1}dt=-\ln \left \vert t\right \vert \] And\[ u_{2}\left ( t\right ) =\int \frac{y_{1}\left ( t\right ) g\left ( t\right ) }{W\left ( t\right ) }dt=\int \frac{e^{-2t}t^{-2}e^{-2t}}{e^{-4t}}dt=\int t^{-2}dt=-\frac{1}{t}\] Hence the particular solution becomes\begin{align*} y_{p} & =u_{1}y_{1}+u_{2}y_{2}\\ & =-\ln \left \vert t\right \vert e^{-2t}-\frac{1}{t}te^{-2t}\\ & =-e^{-2t}\ln \left \vert t\right \vert -e^{-2t} \end{align*}

Therefore the general solution is\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}e^{-2t}+c_{2}te^{-2t}-e^{-2t}\ln \left \vert t\right \vert -e^{-2t} \end{align*}

We can combine \(e^{-2t}\) that shows up from the particular solution with the \(c_{1}e^{-2t}\) term from the homogenous solution, since \(c_{1}\) is arbitrary constant, which simplifies the above to\[ y=c_{1}e^{-2t}+c_{2}te^{-2t}-e^{-2t}\ln \left \vert t\right \vert \]

2.7.8 Section 3.6 problem 8

Find the general solution of \(y^{\prime \prime }+4y=3\frac{1}{\sin 2t}\) for \(0<t<\frac{\pi }{2}\)

solution

The general solution is \[ y=y_{h}+y_{p}\] Where \(y_{h}\) is the solution to the homogenous ode \(y^{\prime \prime }+4y=0\) and \(y_{p}\) is a particular solution which is found using variations of parameters.

Finding \(y_{h}\)

Since ODE has constant coefficients, then the characteristic equation is used. It is given by \(r^{2}+4=0\) or \(r=\pm 2i\). The fundamental solutions are \begin{align*} y_{1} & =\cos 2t\\ y_{2} & =\sin 2t \end{align*}

And the homogenous solution is therefore given by\begin{align*} y_{h} & =c_{1}y_{1}+c_{2}y_{2}\\ & =c_{1}\cos 2t+c_{2}\sin 2t \end{align*}

Finding \(y_{p}\) using variation of parameters

First step is to find Wronskian \(W\) given by\[ W\left ( t\right ) =\begin{vmatrix} y_{1} & y_{2}\\ y_{1}^{\prime } & y_{2}^{\prime }\end{vmatrix} =\begin{vmatrix} \cos 2t & \sin 2t\\ -2\sin 2t & 2\cos 2t \end{vmatrix} =2\cos ^{2}2t+2\sin ^{2}2t=2 \] Let \(g\left ( t\right ) =\frac{3}{\sin 2t}\), therefore the particular solution is\[ y_{p}\left ( t\right ) =u_{1}\left ( t\right ) y_{1}\left ( t\right ) +u_{2}\left ( t\right ) y_{2}\left ( t\right ) \] Where\[ u_{1}\left ( t\right ) =-\int \frac{y_{2}\left ( t\right ) g\left ( t\right ) }{W\left ( t\right ) }dt=-\int \frac{\sin \left ( 2t\right ) 3}{2\sin 2t}dt=-\frac{3}{2}\int dt=\frac{-3}{2}t \] And\[ u_{2}\left ( t\right ) =\int \frac{y_{1}\left ( t\right ) g\left ( t\right ) }{W\left ( t\right ) }dt=\int \frac{\cos \left ( 2t\right ) 3}{2\sin 2t}dt=\frac{3}{2}\int \frac{\cos \left ( 2t\right ) }{\sin \left ( 2t\right ) }dt \] Let \(u=\sin 2t\rightarrow du=2\cos 2tdt\) and the above integral becomes\[ u_{2}\left ( t\right ) =\frac{3}{2}\int \frac{\cos \left ( 2t\right ) }{u}\frac{du}{2\cos 2t}=\frac{3}{4}\int \frac{1}{u}du=\frac{3}{4}\ln \left \vert u\right \vert =\frac{3}{4}\ln \left \vert \sin 2t\right \vert \] Hence the particular solution becomes\begin{align*} y_{p} & =u_{1}y_{1}+u_{2}y_{2}\\ & =\frac{-3}{2}t\cos 2t+\frac{3}{4}\ln \left \vert \sin 2t\right \vert \sin 2t \end{align*}

Therefore the general solution is\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}\cos 2t+c_{2}\sin 2t-\frac{3}{2}t\cos 2t+\frac{3}{4}\sin \left ( 2t\right ) \ln \left \vert \sin 2t\right \vert \end{align*}