HW 7, Math 319, Fall 2016

Nasser M. Abbasi (Discussion section 44272, Th 4:35PM-5:25 PM)

December 30, 2019

Contents

1

HW	7	2
1.1	Section 3.6 problem 1	2
1.2	Section 3.6 problem 2	3
1.3	Section 3.6 problem 3	4
1.4	Section 3.6 problem 4	6
1.5	Section 3.6 problem 5	7
1.6	Section 3.6 problem 6	8
1.7	Section 3.6 problem 7	9
1.8	Section 3.6 problem 8	10

1 HW 7

1.1 Section 3.6 problem 1

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. $y'' - 5y' + 6y = 2e^t$

solution

The general solution is

 $y = y_h + y_p$

Where y_h is the solution to the homogenous ode y'' - 5y' + 6y = 0 and y_p is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding y_h

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^2-5r+6 = 0$ or (r-3)(r-2) = 0. Therefore the roots are $r_1 = 3$, $r_2 = 2$. Hence the two fundamental solutions are

$$y_1 = e^{3t}$$
$$y_2 = e^{2t}$$

And the homogenous solution is therefore given by

$$y_h = c_1 y_1 + c_2 y_2$$

= $c_1 e^{3t} + c_2 e^{2t}$

Finding y_p using variation of parameters

First step is to find Wronskian W given by

$$W(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{3t} & e^{2t} \\ 3e^{3t} & 2e^{2t} \end{vmatrix} = 2e^{5t} - 3e^{5t} = -e^{5t}$$

Letting $g(t) = 2e^t$ therefore the particular solution is

$$y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$

Where

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W}dt = -\int \frac{e^{2t}2e^t}{-e^{5t}}dt = 2\int \frac{e^{3t}}{e^{5t}}dt = 2\int e^{-2t}dt = 2\left[\frac{e^{-2t}}{-2}\right] = -e^{-2t}$$

And

$$u_{2}(t) = \int \frac{y_{1}(t)g(t)}{W}dt = \int \frac{e^{3t}2e^{t}}{-e^{5t}}dt = -2\int \frac{e^{4t}}{e^{5t}}dt = -2\int e^{-t}dt = -2\left[\frac{e^{-t}}{-1}\right] = 2e^{-t}$$

Hence the particular solution becomes

$$y_p = u_1 y_1 + u_2 y_2$$

= $(-e^{-2t}) e^{3t} + 2e^{-t}e^{2t}$
= $-e^t + 2e^t$
= e^t

Therefore the general solution is

$$y = y_h + y_p$$
$$= c_1 e^{3t} + c_2 e^{2t} + e^t$$

Finding y_p using undetermined coefficients

From the form of g(t) in the problem, particular solution is assumed to be

$$y_p = Ae^t$$

Hence

$$y'_p = Ae^t$$
$$y''_p = Ae^t$$

Plugging back into the original ODE gives

Dividing by
$$e^t \neq 0$$
 gives

$$A - 5A + 6A = 2$$
$$2A = 2$$
$$A = 1$$

 $y_p'' - 5y_p' + 6y_p = 2e^t$ $Ae^t - 5Ae^t + 6Ae^t = 2e^t$

Therefore

$$y_p = e^t$$

Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

1.2 Section 3.6 problem 2

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. $y'' - y' - 2y = 2e^{-t}$

solution

The general solution is

$$y = y_h + y_p$$

Where y_h is the solution to the homogenous ode y'' - y' - 2y = 0 and y_p is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding y_h

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^2-r-2 = 0$ or (r + 1)(r - 2) = 0. Therefore the roots are $r_1 = -1$, $r_2 = 2$. Hence the two fundamental solutions are

$$y_1 = e^{-t}$$
$$y_2 = e^{2t}$$

And the homogenous solution is therefore given by

$$y_h = c_1 y_1 + c_2 y_2$$

= $c_1 e^{-t} + c_2 e^{2t}$

Finding y_p using variation of parameters

First step is to find Wronskian W given by

$$W(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-t} & e^{2t} \\ -e^{-t} & 2e^{2t} \end{vmatrix} = 2e^t + e^t = 3e^t$$

Letting $g(t) = 2e^{-t}$ therefore the particular solution is

$$y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$

Where

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W}dt = -\int \frac{e^{2t}2e^{-t}}{3e^t}dt = -\frac{2}{3}\int \frac{e^t}{e^t}dt = -\frac{2}{3}t$$

And

$$u_{2}(t) = \int \frac{y_{1}(t)g(t)}{W}dt = \int \frac{e^{-t}2e^{-t}}{3e^{t}}dt = \frac{2}{3}\int \frac{e^{-2t}}{e^{t}}dt = \frac{2}{3}\int e^{-3t}dt = \frac{2}{3}\left[\frac{e^{-3t}}{-3}\right] = -\frac{2}{9}e^{-3t}dt$$

Hence the particular solution becomes

$$y_p = u_1 y_1 + u_2 y_2$$

= $\left(-\frac{2}{3}t\right)e^{-t} - \frac{2}{9}e^{-3t}e^{2t}$
= $-\frac{2}{3}te^{-t} - \frac{2}{9}e^{-t}$

We notice something here. The extra term $-\frac{2}{9}e^{-t}$ above is constant times one of the fundamental solutions (one of the solutions to the homogenous equation), which is y_1 in this case found earlier. But adding a multiple of a fundamental solution to a particular solution gives another particular solution. So the term $-\frac{2}{9}e^{-t}$ will be merged with the term from the homogenous solution. Therefore

4

the general solution is

$$y = y_h + y_p$$

= $c_1 e^{-t} + c_2 e^{2t} - \frac{2}{3} t e^{-t} - \frac{2}{9} e^{-t}$

We can now combine $\frac{2}{9}e^{-t}$ that shows up from the particular solution with the c_1e^{-t} term from the homogenous solution, since c_1 is arbitrary constant, which simplifies the above to

$$y = y_h + y_p$$

= $c_1 e^{-t} + c_2 e^{2t} - \frac{2}{3} t e^{-t}$

Finding y_p using undetermined coefficients

From the form of g(t) in the problem, and since e^{-t} is already one of the fundamental solutions, then particular solution is assumed to be

 $y_p = Ate^{-t}$

Hence

$$y'_{p} = A \left(e^{-t} - t e^{-t} \right)$$

$$y''_{p} = A \left(-e^{-t} - e^{-t} + t e^{-t} \right)$$

$$= A \left(-2e^{-t} + t e^{-t} \right)$$

Plugging back into the original ODE gives

$$y_p'' - y_p' - 2y_p = 2e^{-t}$$

A (-2e^{-t} + te^{-t}) - A (e^{-t} - te^{-t}) - 2Ate^{-t} = 2e^{-t}

Dividing by $e^{-t} \neq 0$ gives

$$A(-2+t) - A(1-t) - 2At = 2$$

$$t(A + A - 2A) - 2A - A = 2$$

$$-3A = 2$$

$$A = \frac{-2}{3}$$

Therefore

$$y_p = \frac{-2}{3}te^{-t}$$

Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

1.3 Section 3.6 problem 3

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. $y'' + 2y' + y = 3e^{-t}$

solution

The general solution is

$$y = y_h + y_p$$

Where y_h is the solution to the homogenous ode y'' + 2y' + y = 0 and y_p is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding y_h

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^2+2r+1 = 0$ or (r + 1)(r + 1) = 0, Therefore the roots are duplicate $r_1 = -1$. Hence the two fundamental solutions are

$$y_1 = e^{-t}$$
$$y_2 = te^{-t}$$

And the homogenous solution is therefore given by

$$y_h = c_1 y_1 + c_2 y_2$$

= $c_1 e^{-t} + c_2 t e^{-t}$

Finding y_p using variation of parameters

First step is to find Wronskian W given by

$$W(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-t} & te^{-t} \\ -e^{-t} & e^{-t} - te^{-t} \end{vmatrix}$$
$$= (e^{-t})(e^{-t} - te^{-t}) + (te^{-t})(e^{-t})$$
$$= e^{-2t} - te^{-2t} + te^{-2t}$$
$$= e^{-2t}$$

Letting $g(t) = 3e^{-t}$ therefore the particular solution is

$$y_{p}(t) = u_{1}(t) y_{1}(t) + u_{2}(t) y_{2}(t)$$

Where

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W}dt = -\int \frac{te^{-t}(3e^{-t})}{e^{-2t}}dt = -3\int tdt = -\frac{3}{2}t^2$$

/

And

$$u_{2}(t) = \int \frac{y_{1}(t)g(t)}{W}dt = \int \frac{e^{-t}(3e^{-t})}{e^{-2t}}dt = 3\int dt = 3t$$

Hence the particular solution becomes

$$y_p = u_1 y_1 + u_2 y_2$$

= $\left(-\frac{3}{2}t^2\right)e^{-t} + 3t\left(te^{-t}\right)$
= $-\frac{3}{2}t^2e^{-t} + 3t^2e^{-t}$
= $\frac{3}{2}t^2e^{-t}$

Therefore the general solution is

$$y = y_h + y_p$$

= $c_1 e^{-t} + c_2 t e^{-t} + \frac{3}{2} t^2 e^{-t}$

Finding y_p using undetermined coefficients

From the form of $g(t) = 3e^{-t}$ in the problem, we want to try e^{-t} but since e^{-t} is already one of the fundamental solutions, we then look at te^{-t} but this is also one fundamental solutions, then we look for t^2e^{-t} . Hence

$$y_p = At^2 e^{-t}$$

.

$$y'_{p} = A \left(2te^{-t} - t^{2}e^{-t} \right)$$

$$y''_{p} = A \left(2e^{-t} - 2te^{-t} - \left(2te^{-t} - t^{2}e^{-t} \right) \right)$$

$$= A \left(2e^{-t} - 2te^{-t} - 2te^{-t} + t^{2}e^{-t} \right)$$

$$= A \left(2e^{-t} - 4te^{-t} + t^{2}e^{-t} \right)$$

Plugging back into the original ODE gives

$$\begin{aligned} y_p^{\prime\prime} + 2y_p^{\prime} + y_p &= 3e^{-t} \\ A\left(2e^{-t} - 4te^{-t} + t^2e^{-t}\right) + 2A\left(2te^{-t} - t^2e^{-t}\right) + At^2e^{-t} &= 3e^{-t} \end{aligned}$$

Dividing by $e^{-t} \neq 0$ gives

$$A(2-4t+t^{2}) + 2A(2t-t^{2}) + At^{2} = 3$$

$$t(-4A+4A) + t^{2}(A-2A+A) + 2A = 3$$

$$A = \frac{3}{2}$$

Therefore

$$y_p = \frac{3}{2}te^{-t}$$

Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

1.4 Section 3.6 problem 4

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. $4y'' - 4y' + y = 16e^{\frac{t}{2}}$

solution

The general solution is

 $y = y_h + y_p$

Where y_h is the solution to the homogenous ode 4y'' - 4y' + y = 0 and y_p is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding y_h

The first step is to put the ODE in standard form, with the coefficient of y'' being one. Hence it becomes

$$y^{\prime\prime}-y^{\prime}+\frac{1}{4}y=4e^{\frac{t}{2}}$$

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^2 - r + \frac{1}{4} = 0$ or $\left(r - \frac{1}{2}\right)\left(r - \frac{1}{2}\right) = 0$, Therefore the roots are duplicate $r = \frac{1}{2}$. Hence the two fundamental solutions are

$$y_1 = e^{\frac{1}{2}t}$$
$$y_2 = te^{\frac{1}{2}t}$$

And the homogenous solution is therefore given by

$$y_h = c_1 y_1 + c_2 y_2$$

= $c_1 e^{\frac{1}{2}t} + c_2 t e^{\frac{1}{2}t}$

Finding y_p using variation of parameters

First step is to find Wronskian W given by

$$W(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{\frac{1}{2}t} & te^{\frac{1}{2}t} \\ \frac{1}{2}e^{\frac{1}{2}t} & e^{\frac{1}{2}t} + \frac{1}{2}te^{\frac{1}{2}t} \end{vmatrix}$$
$$= \left(e^{\frac{1}{2}t}\right) \left(e^{\frac{1}{2}t} + \frac{1}{2}te^{\frac{1}{2}t}\right) - \left(te^{\frac{1}{2}t}\right) \left(\frac{1}{2}e^{\frac{1}{2}t}\right)$$
$$= e^t + \frac{1}{2}te^t - \frac{1}{2}te^t$$
$$= e^t$$

Letting $g(t) = 4e^{\frac{t}{2}}$ therefore the particular solution is

$$y_p(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$$

Where

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W}dt = -\int \frac{te^{\frac{1}{2}t}\left(4e^{\frac{t}{2}}\right)}{e^t}dt = -4\int tdt = -2t^2$$

1 (+)

And

$$u_{2}(t) = \int \frac{y_{1}(t)g(t)}{W}dt = \int \frac{e^{\frac{1}{2}t}\left(4e^{\frac{1}{2}}\right)}{e^{t}}dt = 4\int dt = 4t$$

Hence the particular solution becomes

$$y_p = u_1 y_1 + u_2 y_2$$

= $(-2t^2) e^{\frac{1}{2}t} + 4t \left(t e^{\frac{1}{2}t} \right)^{\frac{1}{2}t}$
= $-2t^2 e^{\frac{1}{2}t} + 4t^2 e^{\frac{1}{2}t}$
= $2t^2 e^{\frac{1}{2}t}$

Therefore the general solution is

$$y = y_h + y_p$$

= $c_1 e^{\frac{1}{2}t} + c_2 t e^{\frac{1}{2}t} + 2t^2 e^{\frac{1}{2}t}$

Finding y_p using undetermined coefficients

From the form of $g(t) = 4e^{\frac{t}{2}}$ in the problem, we want to try $e^{\frac{t}{2}}$ but since $e^{\frac{t}{2}}$ is already one of the fundamental solutions, we then look at $te^{\frac{t}{2}}$ but this is also one fundamental solutions, then we look for $t^2 e^{\frac{t}{2}}$. Hence

$$y_p = At^2 e^{\frac{t}{2}}$$

Hence

$$y'_{p} = A\left(2te^{\frac{t}{2}} + \frac{1}{2}t^{2}e^{\frac{t}{2}}\right)$$
$$y''_{p} = A\left(2e^{\frac{t}{2}} + te^{\frac{t}{2}} + te^{\frac{t}{2}} + \frac{1}{4}t^{2}e^{\frac{t}{2}}\right)$$
$$= A\left(2e^{\frac{t}{2}} + 2te^{\frac{t}{2}} + \frac{1}{4}t^{2}e^{\frac{t}{2}}\right)$$

Plugging back into the original ODE gives

$$\begin{aligned} y_p^{\prime\prime} - y_p^{\prime} + \frac{1}{4}y_p &= 4e^{\frac{t}{2}} \\ A\left(2e^{\frac{t}{2}} + 2te^{\frac{t}{2}} + \frac{1}{4}t^2e^{\frac{t}{2}}\right) - A\left(2te^{\frac{t}{2}} + \frac{1}{2}t^2e^{\frac{t}{2}}\right) + \frac{1}{4}At^2e^{\frac{t}{2}} &= 4e^{\frac{t}{2}} \end{aligned}$$

1

Dividing by $e^{\frac{t}{2}} \neq 0$ gives

$$A\left(2+2t+\frac{1}{4}t^{2}\right) - A\left(2t+\frac{1}{2}t^{2}\right) + \frac{1}{4}At^{2} = 4$$
$$t\left(2A-2A\right) + t^{2}\left(\frac{1}{4}A - \frac{1}{2}A + \frac{1}{4}A\right) + 2A = 4$$
$$A = 2$$

Therefore

$$y_p = 2t^2 e^{\frac{1}{2}}$$

Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

1.5 Section 3.6 problem 5

Find the general solution of $y'' + y = \tan t$ for $0 < t < \frac{\pi}{2}$

solution

The general solution is

$$y = y_h + y_p$$

Where y_h is the solution to the homogenous ode y'' + y = 0 and y_p is a particular solution which is found using variations of parameters.

Finding y_h

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^2 + 1 = 0$ or $r = \pm i$. Hence the two fundamental solutions are

$$y_1 = \cos t$$
$$y_2 = \sin t$$

And the homogenous solution is therefore given by

$$y_h = c_1 y_1 + c_2 y_2$$
$$= c_1 \cos t + c_2 \sin t$$

Finding y_p using variation of parameters

First step is to find Wronskian W given by

$$W(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{vmatrix} = \cos^2 t + \sin^2 t = 1$$

Let $g(t) = \tan t$, therefore the particular solution is

$$y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$

Where

$$u_{1}(t) = -\int \frac{y_{2}(t)g(t)}{W(t)}dt = -\int \frac{\sin t \tan t}{1}dt = -\int \sin t \frac{\sin t}{\cos t}dt = -\int \frac{\sin^{2} t}{\cos t}dt$$
$$= -\int \frac{1 - \cos^{2} t}{\cos t}dt = \int \frac{\cos^{2} t - 1}{\cos t}dt = \int \cos t - \frac{1}{\cos t}dt$$
$$= \int \cos t dt - \int \frac{1}{\cos t}dt$$
$$= \sin t - \int \sec t dt$$
$$= \sin t - \ln(\sec(t) + \tan(t))$$

And

$$u_{2}(t) = \int \frac{y_{1}(t)g(t)}{W(t)}dt = \int \frac{\cos t \tan t}{1}dt = \int \cos t \frac{\sin t}{\cos t} dt = \int \sin t \, dt = -\cos t$$

Hence the particular solution becomes

$$y_p = u_1 y_1 + u_2 y_2$$

= (sin t - ln (sec(t) + tan(t))) cos t + (- cos t) sin t
= - cos (t) ln (sec(t) + tan(t))

Therefore the general solution is

$$y = y_h + y_p$$

= $c_1 \cos t + c_2 \sin t - \cos(t) \ln(\sec(t) + \tan(t))$

1.6 Section 3.6 problem 6

Find the general solution of $y'' + 9y = 9 \sec^2 3t$ for $0 < t < \frac{\pi}{6}$

solution

The general solution is

$$y = y_h + y_p$$

Where y_h is the solution to the homogenous ode y'' + 9y = 0 and y_p is a particular solution which is found using variations of parameters.

Finding y_h

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^2 + 9 = 0$ or $r = \pm 3i$. Hence the two fundamental solutions are

$$y_1 = \cos 3t$$
$$y_2 = \sin 3t$$

And the homogenous solution is therefore given by

$$y_h = c_1 y_1 + c_2 y_2$$
$$= c_1 \cos 3t + c_2 \sin 3t$$

Finding y_p using variation of parameters

First step is to find Wronskian W given by

$$W(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \cos 3t & \sin 3t \\ -3\sin 3t & 3\cos 3t \end{vmatrix} = 3\cos^2 t + 3\sin^2 t = 3$$

Let $g(t) = \frac{9}{\cos^2 3t}$, therefore the particular solution is

$$y_{p}(t) = u_{1}(t)y_{1}(t) + u_{2}(t)y_{2}(t)$$

Where

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W(t)}dt = -\int \frac{9\sin(3t)}{3\cos^2(3t)}dt = -3\int \frac{\sin(3t)}{\cos^2(3t)}dt$$

Let $u = \cos(3t)$, hence $\frac{du}{dt} = -3\sin 3t \rightarrow dt = \frac{du}{-3\sin 3t}$ and the above integral becomes

$$u_1(t) = -3\int \frac{\sin(3t)}{u^2} \frac{du}{-3\sin 3t} = \int \frac{1}{u^2} du = \frac{-1}{u} = \frac{-1}{\cos 3t} = -\sec(3t)$$

And

$$u_{2}(t) = \int \frac{y_{1}(t)g(t)}{W(t)}dt = \int \frac{9\cos 3t}{3\cos^{2}(3t)}dt = 3\int \frac{1}{\cos(3t)}dt = 3\int \sec(3t) dt = \ln(\sec(3t) + \tan(3t))$$

Hence the particular solution becomes

$$y_p = u_1 y_1 + u_2 y_2$$

= - sec (3t) cos 3t + ln (sec(3t) + tan(3t)) sin 3t
= -1 + ln (sec(t) + tan(t)) sin 3t

Therefore the general solution is

$$y = y_h + y_p$$

= $c_1 \cos 3t + c_2 \sin 3t - 1 + \sin 3t \ln (\sec(t) + \tan(t))$

1.7 Section 3.6 problem 7

Find the general solution of $y'' + 4y' + 4y = t^{-2}e^{-2t}$ for t > 0

solution

The general solution is

$$y = y_h + y_p$$

Where y_h is the solution to the homogenous ode y'' + 4y' + 4y = 0 and y_p is a particular solution which is found using variations of parameters.

Finding y_h

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^2+4r+4 = 0$ or (r + 2)(r + 2) = 0. Hence double root r = -2 and the fundamental solutions are

$$y_1 = e^{-2t}$$
$$y_2 = te^{-2t}$$

And the homogenous solution is therefore given by

$$y_h = c_1 y_1 + c_2 y_2$$

= $c_1 e^{-2t} + c_2 t e^{-2t}$

Finding y_p using variation of parameters

First step is to find Wronskian W given by

$$W(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-2t} & te^{-2t} \\ -2e^{-2t} & e^{-2t} - 2te^{-2t} \end{vmatrix} = e^{-2t} \left(e^{-2t} - 2te^{-2t} \right) + 2e^{-2t} \left(te^{-2t} \right)$$
$$= e^{-4t} - 2te^{-4t} + 2te^{-4t}$$
$$= e^{-4t}$$

Let $g(t) = t^{-2}e^{-2t}$, therefore the particular solution is

$$y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$

Where

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W(t)}dt = -\int \frac{te^{-2t}t^{-2}e^{-2t}}{e^{-4t}}dt = -\int t^{-1}dt = -\ln|t|$$

And

$$u_{2}(t) = \int \frac{y_{1}(t)g(t)}{W(t)}dt = \int \frac{e^{-2t}t^{-2}e^{-2t}}{e^{-4t}}dt = \int t^{-2}dt = -\frac{1}{t}$$

Hence the particular solution becomes

$$y_p = u_1 y_1 + u_2 y_2$$

= $-\ln |t| e^{-2t} - \frac{1}{t} t e^{-2t}$
= $-e^{-2t} \ln |t| - e^{-2t}$

Therefore the general solution is

$$y = y_h + y_p$$

= $c_1 e^{-2t} + c_2 t e^{-2t} - e^{-2t} \ln |t| - e^{-2t}$

We can combine e^{-2t} that shows up from the particular solution with the c_1e^{-2t} term from the homogenous solution, since c_1 is arbitrary constant, which simplifies the above to

$$y = c_1 e^{-2t} + c_2 t e^{-2t} - e^{-2t} \ln |t|$$

1.8 Section 3.6 problem 8

Find the general solution of $y'' + 4y = 3\frac{1}{\sin 2t}$ for $0 < t < \frac{\pi}{2}$

solution

The general solution is

$$y = y_h + y_p$$

Where y_h is the solution to the homogenous ode y'' + 4y = 0 and y_p is a particular solution which is found using variations of parameters.

Finding y_h

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^2 + 4 = 0$ or $r = \pm 2i$. The fundamental solutions are

$$y_1 = \cos 2t$$
$$y_2 = \sin 2t$$

And the homogenous solution is therefore given by

$$y_h = c_1 y_1 + c_2 y_2$$
$$= c_1 \cos 2t + c_2 \sin 2t$$

Finding y_p using variation of parameters

First step is to find Wronskian W given by

$$W(t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \cos 2t & \sin 2t \\ -2\sin 2t & 2\cos 2t \end{vmatrix} = 2\cos^2 2t + 2\sin^2 2t = 2$$

Let $g(t) = \frac{3}{\sin 2t}$, therefore the particular solution is

$$y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$

Where

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W(t)}dt = -\int \frac{\sin(2t)3}{2\sin 2t}dt = -\frac{3}{2}\int dt = \frac{-3}{2}t$$

And

$$u_{2}(t) = \int \frac{y_{1}(t)g(t)}{W(t)}dt = \int \frac{\cos(2t)3}{2\sin 2t}dt = \frac{3}{2} \int \frac{\cos(2t)}{\sin(2t)}dt$$

Let $u = \sin 2t \rightarrow du = 2\cos 2tdt$ and the above integral becomes

$$u_2(t) = \frac{3}{2} \int \frac{\cos(2t)}{u} \frac{du}{2\cos 2t} = \frac{3}{4} \int \frac{1}{u} du = \frac{3}{4} \ln|u| = \frac{3}{4} \ln|\sin 2t|$$

Hence the particular solution becomes

$$y_p = u_1 y_1 + u_2 y_2$$

= $\frac{-3}{2} t \cos 2t + \frac{3}{4} \ln|\sin 2t| \sin 2t$

Therefore the general solution is

$$y = y_h + y_p$$

= $c_1 \cos 2t + c_2 \sin 2t - \frac{3}{2}t \cos 2t + \frac{3}{4}\sin(2t)\ln|\sin 2t|$