HW 7, Math 319, Fall 2016

Nasser M. Abbasi (Discussion section 44272, Th 4:35PM-5:25 PM)

December 30, 2019

Contents

1 HW 7 2
1.1 \quad Section 3.6 problem 1 2
1.2 Section 3.6 problem 2 3
1.3 \quad Section 3.6 problem 3 4
1.4 \quad Section 3.6 problem 4 6
1.5 Section 3.6 problem 5 7
1.6 Section 3.6 problem 6 8
1.7 Section 3.6 problem 7 9
1.8 Section 3.6 problem 8 10

1 HW 7

1.1 Section 3.6 problem 1

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. $y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}$
solution
The general solution is

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogenous ode $y^{\prime \prime}-5 y^{\prime}+6 y=0$ and y_{p} is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding y_{h}
Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^{2}-5 r+6=$ 0 or $(r-3)(r-2)=0$. Therefore the roots are $r_{1}=3, r_{2}=2$. Hence the two fundamental solutions are

$$
\begin{aligned}
& y_{1}=e^{3 t} \\
& y_{2}=e^{2 t}
\end{aligned}
$$

And the homogenous solution is therefore given by

$$
\begin{aligned}
y_{h} & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{3 t}+c_{2} e^{2 t}
\end{aligned}
$$

Finding y_{p} using variation of parameters
First step is to find Wronskian W given by

$$
W(t)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{3 t} & e^{2 t} \\
3 e^{3 t} & 2 e^{2 t}
\end{array}\right|=2 e^{5 t}-3 e^{5 t}=-e^{5 t}
$$

Letting $g(t)=2 e^{t}$ therefore the particular solution is

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Where

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W} d t=-\int \frac{e^{2 t} 2 e^{t}}{-e^{5 t}} d t=2 \int \frac{e^{3 t}}{e^{5 t}} d t=2 \int e^{-2 t} d t=2\left[\frac{e^{-2 t}}{-2}\right]=-e^{-2 t}
$$

And

$$
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W} d t=\int \frac{e^{3 t} 2 e^{t}}{-e^{5 t}} d t=-2 \int \frac{e^{4 t}}{e^{5 t}} d t=-2 \int e^{-t} d t=-2\left[\frac{e^{-t}}{-1}\right]=2 e^{-t}
$$

Hence the particular solution becomes

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(-e^{-2 t}\right) e^{3 t}+2 e^{-t} e^{2 t} \\
& =-e^{t}+2 e^{t} \\
& =e^{t}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{3 t}+c_{2} e^{2 t}+e^{t}
\end{aligned}
$$

Finding y_{p} using undetermined coefficients
From the form of $g(t)$ in the problem, particular solution is assumed to be

$$
y_{p}=A e^{t}
$$

Hence

$$
\begin{aligned}
y_{p}^{\prime} & =A e^{t} \\
y_{p}^{\prime \prime} & =A e^{t}
\end{aligned}
$$

Plugging back into the original ODE gives

$$
\begin{aligned}
y_{p}^{\prime \prime}-5 y_{p}^{\prime}+6 y_{p} & =2 e^{t} \\
A e^{t}-5 A e^{t}+6 A e^{t} & =2 e^{t}
\end{aligned}
$$

Dividing by $e^{t} \neq 0$ gives

$$
\begin{aligned}
A-5 A+6 A & =2 \\
2 A & =2 \\
A & =1
\end{aligned}
$$

Therefore

$$
y_{p}=e^{t}
$$

Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

1.2 Section 3.6 problem 2

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. $y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t}$
solution
The general solution is

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogenous ode $y^{\prime \prime}-y^{\prime}-2 y=0$ and y_{p} is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding y_{h}

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^{2}-r-2=0$ or $(r+1)(r-2)=0$. Therefore the roots are $r_{1}=-1, r_{2}=2$. Hence the two fundamental solutions are

$$
\begin{aligned}
& y_{1}=e^{-t} \\
& y_{2}=e^{2 t}
\end{aligned}
$$

And the homogenous solution is therefore given by

$$
\begin{aligned}
y_{h} & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{-t}+c_{2} e^{2 t}
\end{aligned}
$$

Finding y_{p} using variation of parameters
First step is to find Wronskian W given by

$$
W(t)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-t} & e^{2 t} \\
-e^{-t} & 2 e^{2 t}
\end{array}\right|=2 e^{t}+e^{t}=3 e^{t}
$$

Letting $g(t)=2 e^{-t}$ therefore the particular solution is

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Where

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W} d t=-\int \frac{e^{2 t} 2 e^{-t}}{3 e^{t}} d t=-\frac{2}{3} \int \frac{e^{t}}{e^{t}} d t=-\frac{2}{3} t
$$

And

$$
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W} d t=\int \frac{e^{-t} 2 e^{-t}}{3 e^{t}} d t=\frac{2}{3} \int \frac{e^{-2 t}}{e^{t}} d t=\frac{2}{3} \int e^{-3 t} d t=\frac{2}{3}\left[\frac{e^{-3 t}}{-3}\right]=-\frac{2}{9} e^{-3 t}
$$

Hence the particular solution becomes

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(-\frac{2}{3} t\right) e^{-t}-\frac{2}{9} e^{-3 t} e^{2 t} \\
& =-\frac{2}{3} t e^{-t}-\frac{2}{9} e^{-t}
\end{aligned}
$$

We notice something here. The extra term $-\frac{2}{9} e^{-t}$ above is constant times one of the fundamental solutions (one of the solutions to the homogenous equation), which is y_{1} in this case found earlier. But adding a multiple of a fundamental solution to a particular solution gives another particular solution. So the term $-\frac{2}{9} e^{-t}$ will be merged with the term from the homogenous solution. Therefore
the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{-t}+c_{2} e^{2 t}-\frac{2}{3} t e^{-t}-\frac{2}{9} e^{-t}
\end{aligned}
$$

We can now combine $\frac{2}{9} e^{-t}$ that shows up from the particular solution with the $c_{1} e^{-t}$ term from the homogenous solution, since c_{1} is arbitrary constant, which simplifies the above to

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{-t}+c_{2} e^{2 t}-\frac{2}{3} t e^{-t}
\end{aligned}
$$

Finding y_{p} using undetermined coefficients
From the form of $g(t)$ in the problem, and since e^{-t} is already one of the fundamental solutions, then particular solution is assumed to be

$$
y_{p}=A t e^{-t}
$$

Hence

$$
\begin{aligned}
y_{p}^{\prime} & =A\left(e^{-t}-t e^{-t}\right) \\
y_{p}^{\prime \prime} & =A\left(-e^{-t}-e^{-t}+t e^{-t}\right) \\
& =A\left(-2 e^{-t}+t e^{-t}\right)
\end{aligned}
$$

Plugging back into the original ODE gives

$$
\begin{aligned}
y_{p}^{\prime \prime}-y_{p}^{\prime}-2 y_{p} & =2 e^{-t} \\
A\left(-2 e^{-t}+t e^{-t}\right)-A\left(e^{-t}-t e^{-t}\right)-2 A t e^{-t} & =2 e^{-t}
\end{aligned}
$$

Dividing by $e^{-t} \neq 0$ gives

$$
\begin{aligned}
A(-2+t)-A(1-t)-2 A t & =2 \\
t(A+A-2 A)-2 A-A & =2 \\
-3 A & =2 \\
A & =\frac{-2}{3}
\end{aligned}
$$

Therefore

$$
y_{p}=\frac{-2}{3} t e^{-t}
$$

Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

1.3 Section 3.6 problem 3

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. $y^{\prime \prime}+2 y^{\prime}+y=3 e^{-t}$
solution
The general solution is

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogenous ode $y^{\prime \prime}+2 y^{\prime}+y=0$ and y_{p} is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding y_{h}

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^{2}+2 r+1=$ 0 or $(r+1)(r+1)=0$, Therefore the roots are duplicate $r_{1}=-1$. Hence the two fundamental solutions are

$$
\begin{aligned}
& y_{1}=e^{-t} \\
& y_{2}=t e^{-t}
\end{aligned}
$$

And the homogenous solution is therefore given by

$$
\begin{aligned}
y_{h} & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{-t}+c_{2} t e^{-t}
\end{aligned}
$$

Finding y_{p} using variation of parameters

First step is to find Wronskian W given by

$$
\begin{aligned}
W(t) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-t} & t e^{-t} \\
-e^{-t} & e^{-t}-t e^{-t}
\end{array}\right| \\
& =\left(e^{-t}\right)\left(e^{-t}-t e^{-t}\right)+\left(t e^{-t}\right)\left(e^{-t}\right) \\
& =e^{-2 t}-t e^{-2 t}+t e^{-2 t} \\
& =e^{-2 t}
\end{aligned}
$$

Letting $g(t)=3 e^{-t}$ therefore the particular solution is

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Where

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W} d t=-\int \frac{t e^{-t}\left(3 e^{-t}\right)}{e^{-2 t}} d t=-3 \int t d t=-\frac{3}{2} t^{2}
$$

And

$$
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W} d t=\int \frac{e^{-t}\left(3 e^{-t}\right)}{e^{-2 t}} d t=3 \int d t=3 t
$$

Hence the particular solution becomes

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(-\frac{3}{2} t^{2}\right) e^{-t}+3 t\left(t e^{-t}\right) \\
& =-\frac{3}{2} t^{2} e^{-t}+3 t^{2} e^{-t} \\
& =\frac{3}{2} t^{2} e^{-t}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{-t}+c_{2} t e^{-t}+\frac{3}{2} t^{2} e^{-t}
\end{aligned}
$$

Finding y_{p} using undetermined coefficients
From the form of $g(t)=3 e^{-t}$ in the problem, we want to try e^{-t} but since e^{-t} is already one of the fundamental solutions, we then look at $t e^{-t}$ but this is also one fundamental solutions, then we look for $t^{2} e^{-t}$. Hence

$$
y_{p}=A t^{2} e^{-t}
$$

Hence

$$
\begin{aligned}
y_{p}^{\prime} & =A\left(2 t e^{-t}-t^{2} e^{-t}\right) \\
y_{p}^{\prime \prime} & =A\left(2 e^{-t}-2 t e^{-t}-\left(2 t e^{-t}-t^{2} e^{-t}\right)\right) \\
& =A\left(2 e^{-t}-2 t e^{-t}-2 t e^{-t}+t^{2} e^{-t}\right) \\
& =A\left(2 e^{-t}-4 t e^{-t}+t^{2} e^{-t}\right)
\end{aligned}
$$

Plugging back into the original ODE gives

$$
\begin{aligned}
y_{p}^{\prime \prime}+2 y_{p}^{\prime}+y_{p} & =3 e^{-t} \\
A\left(2 e^{-t}-4 t e^{-t}+t^{2} e^{-t}\right)+2 A\left(2 t e^{-t}-t^{2} e^{-t}\right)+A t^{2} e^{-t} & =3 e^{-t}
\end{aligned}
$$

Dividing by $e^{-t} \neq 0$ gives

$$
\begin{aligned}
A\left(2-4 t+t^{2}\right)+2 A\left(2 t-t^{2}\right)+A t^{2} & =3 \\
t(-4 A+4 A)+t^{2}(A-2 A+A)+2 A & =3 \\
A & =\frac{3}{2}
\end{aligned}
$$

Therefore

$$
y_{p}=\frac{3}{2} t e^{-t}
$$

Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

1.4 Section 3.6 problem 4

Use method of variations of parameters to find particular solution and check your solution using method of undetermined coefficients. $4 y^{\prime \prime}-4 y^{\prime}+y=16 e^{\frac{t}{2}}$
solution
The general solution is

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogenous ode $4 y^{\prime \prime}-4 y^{\prime}+y=0$ and y_{p} is a particular solution which is found using variations of parameters and also using undetermined coefficients to compare with.

Finding y_{h}
The first step is to put the ODE in standard form, with the coefficient of $y^{\prime \prime}$ being one. Hence it becomes

$$
y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=4 e^{\frac{t}{2}}
$$

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^{2}-r+\frac{1}{4}=$ 0 or $\left(r-\frac{1}{2}\right)\left(r-\frac{1}{2}\right)=0$, Therefore the roots are duplicate $r=\frac{1}{2}$. Hence the two fundamental solutions are

$$
\begin{aligned}
& y_{1}=e^{\frac{1}{2} t} \\
& y_{2}=t e^{\frac{1}{2} t}
\end{aligned}
$$

And the homogenous solution is therefore given by

$$
\begin{aligned}
y_{h} & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{\frac{1}{2} t}+c_{2} t e^{\frac{1}{2} t}
\end{aligned}
$$

Finding y_{p} using variation of parameters
First step is to find Wronskian W given by

$$
\begin{aligned}
W(t) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{\frac{1}{2} t} & t e^{\frac{1}{2} t} \\
\frac{1}{2} e^{\frac{1}{2} t} & e^{\frac{1}{2} t}+\frac{1}{2} t e^{\frac{1}{2} t}
\end{array}\right| \\
& =\left(e^{\frac{1}{2^{2}} t}\right)\left(e^{\frac{1}{2} t}+\frac{1}{2} t e e^{\frac{1}{2} t}\right)-\left(t e^{\frac{1}{2} t}\right)\left(\frac{1}{2} e^{\frac{1}{2} t}\right) \\
& =e^{t}+\frac{1}{2} t e^{t}-\frac{1}{2} t e^{t} \\
& =e^{t}
\end{aligned}
$$

Letting $g(t)=4 e^{\frac{t}{2}}$ therefore the particular solution is

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Where

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W} d t=-\int \frac{t e^{\frac{1}{2} t}\left(4 e^{\frac{t}{2}}\right)}{e^{t}} d t=-4 \int t d t=-2 t^{2}
$$

And

$$
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W} d t=\int \frac{e^{\frac{1}{2} t}\left(4 e^{\frac{t}{2}}\right)}{e^{t}} d t=4 \int d t=4 t
$$

Hence the particular solution becomes

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(-2 t^{2}\right) e^{\frac{1}{2} t}+4 t\left(t e^{\frac{1}{2} t}\right) \\
& =-2 t^{2} e^{\frac{1}{2} t}+4 t^{2} e^{\frac{1}{2} t} \\
& =2 t^{2} e^{\frac{1}{2} t}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{\frac{1}{2} t}+c_{2} t e^{\frac{1}{2} t}+2 t^{2} e^{\frac{1}{2} t}
\end{aligned}
$$

Finding y_{p} using undetermined coefficients
From the form of $g(t)=4 e^{\frac{t}{2}}$ in the problem, we want to try $e^{\frac{t}{2}}$ but since $e^{\frac{t}{2}}$ is already one of the fundamental solutions, we then look at $t e^{\frac{t}{2}}$ but this is also one fundamental solutions, then we look for $t^{2} e^{\frac{t}{2}}$. Hence

$$
y_{p}=A t^{2} e^{\frac{t}{2}}
$$

Hence

$$
\begin{aligned}
y_{p}^{\prime} & =A\left(2 t e^{\frac{t}{2}}+\frac{1}{2} t^{2} e^{\frac{t}{2}}\right) \\
y_{p}^{\prime \prime} & =A\left(2 e^{\frac{t}{2}}+t e^{\frac{t}{2}}+t e^{\frac{t}{2}}+\frac{1}{4} t^{2} e^{\frac{t}{2}}\right) \\
& =A\left(2 e^{\frac{t}{2}}+2 t e^{\frac{t}{2}}+\frac{1}{4} t^{2} e^{\frac{t}{2}}\right)
\end{aligned}
$$

Plugging back into the original ODE gives

$$
\begin{aligned}
y_{p}^{\prime \prime}-y_{p}^{\prime}+\frac{1}{4} y_{p} & =4 e^{\frac{t}{2}} \\
A\left(2 e^{\frac{t}{2}}+2 t e^{\frac{t}{2}}+\frac{1}{4} t^{2} e^{\frac{t}{2}}\right)-A\left(2 t e^{\frac{t}{2}}+\frac{1}{2} t^{2} e^{\frac{t}{2}}\right)+\frac{1}{4} A t^{2} e^{\frac{t}{2}} & =4 e^{\frac{t}{2}}
\end{aligned}
$$

Dividing by $e^{\frac{t}{2}} \neq 0$ gives

$$
\begin{aligned}
A\left(2+2 t+\frac{1}{4} t^{2}\right)-A\left(2 t+\frac{1}{2} t^{2}\right)+\frac{1}{4} A t^{2} & =4 \\
t(2 A-2 A)+t^{2}\left(\frac{1}{4} A-\frac{1}{2} A+\frac{1}{4} A\right)+2 A & =4 \\
A & =2
\end{aligned}
$$

Therefore

$$
y_{p}=2 t^{2} e^{\frac{t}{2}}
$$

Which agrees with variation of parameters particular solution found earlier. Therefore the same general solution is obtained as expected. QED.

1.5 Section 3.6 problem 5

Find the general solution of $y^{\prime \prime}+y=\tan t$ for $0<t<\frac{\pi}{2}$
solution
The general solution is

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogenous ode $y^{\prime \prime}+y=0$ and y_{p} is a particular solution which is found using variations of parameters.

Finding y_{h}

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^{2}+1=0$ or $r= \pm i$. Hence the two fundamental solutions are

$$
\begin{aligned}
& y_{1}=\cos t \\
& y_{2}=\sin t
\end{aligned}
$$

And the homogenous solution is therefore given by

$$
\begin{aligned}
y_{h} & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} \cos t+c_{2} \sin t
\end{aligned}
$$

Finding y_{p} using variation of parameters

First step is to find Wronskian W given by

$$
W(t)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right|=\cos ^{2} t+\sin ^{2} t=1
$$

Let $g(t)=\tan t$, therefore the particular solution is

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Where

$$
\begin{aligned}
u_{1}(t) & =-\int \frac{y_{2}(t) g(t)}{W(t)} d t=-\int \frac{\sin t \tan t}{1} d t=-\int \sin t \frac{\sin t}{\cos t} d t=-\int \frac{\sin ^{2} t}{\cos t} d t \\
& =-\int \frac{1-\cos ^{2} t}{\cos t} d t=\int \frac{\cos ^{2} t-1}{\cos t} d t=\int \cos t-\frac{1}{\cos t} d t \\
& =\int \cos t d t-\int \frac{1}{\cos t} d t \\
& =\sin t-\int \sec t d t \\
& =\sin t-\ln (\sec (t)+\tan (t))
\end{aligned}
$$

And

$$
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W(t)} d t=\int \frac{\cos t \tan t}{1} d t=\int \cos t \frac{\sin t}{\cos t} d t=\int \sin t d t=-\cos t
$$

Hence the particular solution becomes

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =(\sin t-\ln (\sec (t)+\tan (t))) \cos t+(-\cos t) \sin t \\
& =-\cos (t) \ln (\sec (t)+\tan (t))
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} \cos t+c_{2} \sin t-\cos (t) \ln (\sec (t)+\tan (t))
\end{aligned}
$$

1.6 Section 3.6 problem 6

Find the general solution of $y^{\prime \prime}+9 y=9 \sec ^{2} 3 t$ for $0<t<\frac{\pi}{6}$
solution
The general solution is

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogenous ode $y^{\prime \prime}+9 y=0$ and y_{p} is a particular solution which is found using variations of parameters.

Finding y_{h}

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^{2}+9=0$ or $r= \pm 3 i$. Hence the two fundamental solutions are

$$
\begin{aligned}
& y_{1}=\cos 3 t \\
& y_{2}=\sin 3 t
\end{aligned}
$$

And the homogenous solution is therefore given by

$$
\begin{aligned}
y_{h} & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} \cos 3 t+c_{2} \sin 3 t
\end{aligned}
$$

Finding y_{p} using variation of parameters
First step is to find Wronskian W given by

$$
W(t)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos 3 t & \sin 3 t \\
-3 \sin 3 t & 3 \cos 3 t
\end{array}\right|=3 \cos ^{2} t+3 \sin ^{2} t=3
$$

Let $g(t)=\frac{9}{\cos ^{2} 3 t}$, therefore the particular solution is

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Where

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W(t)} d t=-\int \frac{9 \sin (3 t)}{3 \cos ^{2}(3 t)} d t=-3 \int \frac{\sin (3 t)}{\cos ^{2}(3 t)} d t
$$

Let $u=\cos (3 t)$, hence $\frac{d u}{d t}=-3 \sin 3 t \rightarrow d t=\frac{d u}{-3 \sin 3 t}$ and the above integral becomes

$$
u_{1}(t)=-3 \int \frac{\sin (3 t)}{u^{2}} \frac{d u}{-3 \sin 3 t}=\int \frac{1}{u^{2}} d u=\frac{-1}{u}=\frac{-1}{\cos 3 t}=-\sec (3 t)
$$

And

$$
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W(t)} d t=\int \frac{9 \cos 3 t}{3 \cos ^{2}(3 t)} d t=3 \int \frac{1}{\cos (3 t)} d t=3 \int \sec (3 t) d t=\ln (\sec (3 t)+\tan (3 t))
$$

Hence the particular solution becomes

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =-\sec (3 t) \cos 3 t+\ln (\sec (3 t)+\tan (3 t)) \sin 3 t \\
& =-1+\ln (\sec (t)+\tan (t)) \sin 3 t
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} \cos 3 t+c_{2} \sin 3 t-1+\sin 3 t \ln (\sec (t)+\tan (t))
\end{aligned}
$$

1.7 Section 3.6 problem 7

Find the general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=t^{-2} e^{-2 t}$ for $t>0$
solution
The general solution is

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogenous ode $y^{\prime \prime}+4 y^{\prime}+4 y=0$ and y_{p} is a particular solution which is found using variations of parameters.

Finding y_{h}

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^{2}+4 r+4=$ 0 or $(r+2)(r+2)=0$. Hence double root $r=-2$ and the fundamental solutions are

$$
\begin{aligned}
& y_{1}=e^{-2 t} \\
& y_{2}=t e^{-2 t}
\end{aligned}
$$

And the homogenous solution is therefore given by

$$
\begin{aligned}
y_{h} & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{-2 t}+c_{2} t e^{-2 t}
\end{aligned}
$$

Finding y_{p} using variation of parameters
First step is to find Wronskian W given by

$$
\begin{aligned}
W(t) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 t} & t e e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}-2 t e^{-2 t}
\end{array}\right|=e^{-2 t}\left(e^{-2 t}-2 t e^{-2 t}\right)+2 e^{-2 t}\left(t e^{-2 t}\right) \\
& =e^{-4 t}-2 t e^{-4 t}+2 t e^{-4 t} \\
& =e^{-4 t}
\end{aligned}
$$

Let $g(t)=t^{-2} e^{-2 t}$, therefore the particular solution is

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Where

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W(t)} d t=-\int \frac{t e^{-2 t} t^{-2} e^{-2 t}}{e^{-4 t}} d t=-\int t^{-1} d t=-\ln |t|
$$

And

$$
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W(t)} d t=\int \frac{e^{-2 t} t^{-2} e^{-2 t}}{e^{-4 t}} d t=\int t^{-2} d t=-\frac{1}{t}
$$

Hence the particular solution becomes

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =-\ln |t| e^{-2 t}-\frac{1}{t} t e^{-2 t} \\
& =-e^{-2 t} \ln |t|-e^{-2 t}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{-2 t}+c_{2} t e^{-2 t}-e^{-2 t} \ln |t|-e^{-2 t}
\end{aligned}
$$

We can combine $e^{-2 t}$ that shows up from the particular solution with the $c_{1} e^{-2 t}$ term from the homogenous solution, since c_{1} is arbitrary constant, which simplifies the above to

$$
y=c_{1} e^{-2 t}+c_{2} t e^{-2 t}-e^{-2 t} \ln |t|
$$

1.8 Section 3.6 problem 8

Find the general solution of $y^{\prime \prime}+4 y=3 \frac{1}{\sin 2 t}$ for $0<t<\frac{\pi}{2}$
solution
The general solution is

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogenous ode $y^{\prime \prime}+4 y=0$ and y_{p} is a particular solution which is found using variations of parameters.

Finding y_{h}

Since ODE has constant coefficients, then the characteristic equation is used. It is given by $r^{2}+4=0$ or $r= \pm 2 i$. The fundamental solutions are

$$
\begin{aligned}
& y_{1}=\cos 2 t \\
& y_{2}=\sin 2 t
\end{aligned}
$$

And the homogenous solution is therefore given by

$$
\begin{aligned}
y_{h} & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} \cos 2 t+c_{2} \sin 2 t
\end{aligned}
$$

Finding y_{p} using variation of parameters
First step is to find Wronskian W given by

$$
W(t)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-2 \sin 2 t & 2 \cos 2 t
\end{array}\right|=2 \cos ^{2} 2 t+2 \sin ^{2} 2 t=2
$$

Let $g(t)=\frac{3}{\sin 2 t}$, therefore the particular solution is

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Where

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W(t)} d t=-\int \frac{\sin (2 t) 3}{2 \sin 2 t} d t=-\frac{3}{2} \int d t=\frac{-3}{2} t
$$

And

$$
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W(t)} d t=\int \frac{\cos (2 t) 3}{2 \sin 2 t} d t=\frac{3}{2} \int \frac{\cos (2 t)}{\sin (2 t)} d t
$$

Let $u=\sin 2 t \rightarrow d u=2 \cos 2 t d t$ and the above integral becomes

$$
u_{2}(t)=\frac{3}{2} \int \frac{\cos (2 t)}{u} \frac{d u}{2 \cos 2 t}=\frac{3}{4} \int \frac{1}{u} d u=\frac{3}{4} \ln |u|=\frac{3}{4} \ln |\sin 2 t|
$$

Hence the particular solution becomes

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\frac{-3}{2} t \cos 2 t+\frac{3}{4} \ln |\sin 2 t| \sin 2 t
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} \cos 2 t+c_{2} \sin 2 t-\frac{3}{2} t \cos 2 t+\frac{3}{4} \sin (2 t) \ln |\sin 2 t|
\end{aligned}
$$

