3.13 HW 12

  3.13.1 chapter 15, problem 4.12
  3.13.2 chapter 15, problem 4.18
  3.13.3 chapter 15, problem 4.20
  3.13.4 chapter 15, problem 4.21
  3.13.5 chapter 15, problem 4.23
  3.13.6 chapter 15, problem 4.25
  3.13.7 chapter 15, problem 4.3
  3.13.8 chapter 15, problem 4.5
  3.13.9 chapter 15, problem 4.7
  3.13.10 chapter 15, problem 5.1
  3.13.11 chapter 15, problem 5.10
  3.13.12 chapter 15, problem 5.2
  3.13.13 chapter 15, problem 5.22
  3.13.14 chapter 15, problem 5.4
  3.13.15 chapter 15, problem 6.2
  3.13.16 chapter 15, problem 6.4
  3.13.17 chapter 15, problem 6.5
  3.13.18 chapter 15, problem 6.9
  3.13.19 chapter 15, problem 7.11
  3.13.20 chapter 15, problem 7.7
  3.13.21 chapter 15, problem 7.9
PDF (letter size)
PDF (legal size)

3.13.1 chapter 15, problem 4.12

Problem Find the exponential Fourier transform of the given \(f\left ( x\right ) \) and write \(f\relax (x) \) as a fourier integral.

\[ \ f(x)=\left \{ \begin {array} [c]{lll}\sin x & & \left \vert x\right \vert <\frac {\pi }{2}\\ \ & & \ \\ 0, & & \left \vert x\right \vert >\frac {\pi }{2}\end {array} \right . \]

Solution

Let \(\digamma \left (\alpha \right ) \) be the Fourier transform of \(f\left ( x\right ) \) defined as \(\digamma \left (\alpha \right ) =\frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} f\relax (x) \ e^{-i\alpha x}\ dx\)

\begin {align*} \digamma \left (\alpha \right ) & =\frac {1}{2\pi }\ {\displaystyle \int \limits _{-\infty }^{\infty }} f\relax (x) \ e^{-i\alpha x}\ dx\\ 2\pi \ \digamma \left (\alpha \right ) & =\ {\displaystyle \int \limits _{-\frac {\pi }{2}}^{\frac {\pi }{2}}} \sin x\ \ e^{-i\alpha x}\ dx\ \ \ \end {align*}

Integration by parts, \(u=\sin x,du=\cos x,v=\frac {e^{-i\alpha x}}{-i\alpha }\), hence \(\int u\ dv\ =\) \(uv-\int du\ v\)

\begin {align*} I & =\ {\displaystyle \int \limits _{-\frac {\pi }{2}}^{\frac {\pi }{2}}} \sin x\ \ e^{-i\alpha x}\ dx\ \ \\ & =\left [ \sin x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}-{\displaystyle \int \limits _{-\frac {\pi }{2}}^{\frac {\pi }{2}}} \cos x\ \ \frac {e^{-i\alpha x}}{-i\alpha }\ dx\\ & =\left [ \sin x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}+\frac {1}{i\alpha }{\displaystyle \int \limits _{-\frac {\pi }{2}}^{\frac {\pi }{2}}} \cos x\ \ e^{-i\alpha x}\ dx \end {align*}

Integration by parts the second integral again. \(u=\cos x,du=-\sin x\)

\begin {align*} I & =\left [ \sin x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}+\frac {1}{i\alpha }\left \{ \left [ \cos x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}-{\displaystyle \int \limits _{-\frac {\pi }{2}}^{\frac {\pi }{2}}} \left (-\sin x\right ) \ \ \frac {e^{-i\alpha x}}{-i\alpha }\ dx\right \} \\ I & =\left [ \sin x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}+\frac {1}{i\alpha }\left \{ \left [ \cos x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}-\left ( \frac {1}{i\alpha }\right ) {\displaystyle \int \limits _{-\frac {\pi }{2}}^{\frac {\pi }{2}}} \sin x\ \ e^{-i\alpha x}\ dx\right \} \\ I & =\left [ \sin x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}+\frac {1}{i\alpha }\left [ \cos x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}-\frac {1}{i^{2}\alpha ^{2}}{\displaystyle \int \limits _{-\frac {\pi }{2}}^{\frac {\pi }{2}}} \sin x\ \ e^{-i\alpha x}\ dx\\ I & =\left [ \sin x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}+\frac {1}{i\alpha }\left [ \cos x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}+\frac {1}{\alpha ^{2}}{\displaystyle \int \limits _{-\frac {\pi }{2}}^{\frac {\pi }{2}}} \sin x\ \ e^{-i\alpha x}\ dx \end {align*}

But the last integral on the right above is the same as the integral we start with, so

\begin {align*} I & =\left [ \sin x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}+\frac {1}{i\alpha }\left [ \cos x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}+\frac {1}{\alpha ^{2}}I\\ I-\frac {1}{\alpha ^{2}}I & =\left [ \sin x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}-\frac {i}{\alpha }\left [ \cos x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\frac {\pi }{2}}^{\frac {\pi }{2}}\\ I\left (1-\frac {1}{\alpha ^{2}}\right ) & =\left [ \sin \left (\frac {\pi }{2}\right ) \ \frac {e^{-i\alpha \frac {\pi }{2}}}{-i\alpha }-\sin \left ( -\frac {\pi }{2}\right ) \ \frac {e^{-i\alpha \left (-\frac {\pi }{2}\right ) }}{-i\alpha }\right ] -\frac {i}{\alpha }\left [ \cos \left (\frac {\pi }{2}\right ) \ \frac {e^{-i\alpha \frac {\pi }{2}}}{-i\alpha }-\cos \left (-\frac {\pi }{2}\right ) \ \frac {e^{-i\alpha \left (-\frac {\pi }{2}\right ) }}{-i\alpha }\right ] \\ I\left (\frac {\alpha ^{2}-1}{\alpha ^{2}}\right ) & =\left [ \ \frac {e^{-i\alpha \frac {\pi }{2}}}{-i\alpha }+\ \frac {e^{i\alpha \left (\frac {\pi }{2}\right ) }}{-i\alpha }\right ] -\ \frac {i}{\alpha }\relax (0) \\ I & =\left (\frac {\alpha ^{2}}{\alpha ^{2}-1}\right ) \left [ \ \frac {-e^{-i\alpha \frac {\pi }{2}}}{i\alpha }-\ \frac {e^{i\alpha \frac {\pi }{2}}}{i\alpha }\right ] \\ I & =\left (\frac {\alpha }{\alpha ^{2}-1}\right ) \frac {-1}{i}\left [ \ e^{i\alpha \frac {\pi }{2}}+e^{-i\alpha \frac {\pi }{2}}\right ] \\ I & =\left (\frac {\alpha i}{\alpha ^{2}-1}\right ) \ \left [ \ e^{i\alpha \frac {\pi }{2}}+e^{-i\alpha \frac {\pi }{2}}\right ] \\ I & =\left (\frac {\alpha i}{\alpha ^{2}-1}\right ) 2\cos \left (\alpha \frac {\pi }{2}\right ) \end {align*}

Hence the Fourier transform of \(f\relax (x) \) is

\begin {align*} 2\pi \ \digamma \left (\alpha \right ) & =\ {\displaystyle \int \limits _{-\frac {\pi }{2}}^{\frac {\pi }{2}}} \sin x\ \ e^{-i\alpha x}\ dx\\ & =\left (\frac {\alpha i}{\alpha ^{2}-1}\right ) 2\cos \left (\alpha \frac {\pi }{2}\right ) \end {align*}

Therefore

\begin {align*} g\left (\alpha \right ) & =\frac {1}{\pi }\left (\frac {\alpha i}{\alpha ^{2}-1}\right ) \cos \left (\alpha \frac {\pi }{2}\right ) \\ & =\ \frac {\alpha \ i\ \cos \left (\alpha \frac {\pi }{2}\right ) }{\left ( \alpha ^{2}-1\right ) \pi } \end {align*}

To obtain \(f\relax (x) \) given its fourier transform \(\digamma \left ( \alpha \right ) ,\) then we apply the inverse fourier transform

\begin {align*} f\relax (x) & =\ {\displaystyle \int \limits _{-\infty }^{\infty }} \digamma \left (\alpha \right ) \ e^{i\alpha x}\ d\alpha \\ & =\ {\displaystyle \int \limits _{-\infty }^{\infty }} \ \frac {\alpha \ i\ \cos \left (\alpha \frac {\pi }{2}\right ) }{\left ( \alpha ^{2}-1\right ) \pi }\ \ e^{i\alpha x}\ d\alpha \\ & =\frac {1}{\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} \ \frac {\alpha \ i\ \cos \left (\alpha \frac {\pi }{2}\right ) }{\alpha ^{2}-1}\ \ e^{i\alpha x}\ d\alpha \end {align*}

3.13.2 chapter 15, problem 4.18

Problem Find the fourier sin transform of the given \(f\left ( x\right ) \) and write \(f\relax (x) \) as a fourier integral. Verify the answer is the same as the exponential fourier transform.

\[ \ f(x)=\left \{ \begin {array} [c]{lll}x & & \left \vert x\right \vert <1\\ \ & & \ \\ 0, & & \left \vert x\right \vert >1 \end {array} \right . \]

Solution

Let \(\mathcal {F}_{s}f\relax (x) \) be the Fourier sin transform of \(f\relax (x) \) defined as \(g_{s}\left (\alpha \right ) =\mathcal {F}_{s}f\relax (x) =\sqrt {\frac {2}{\pi }}{\displaystyle \int \limits _{0}^{\infty }} f\relax (x) \ \sin \left (\alpha x\right ) \ dx\). Hence, for the function above we get

\[ g_{s}\left (\alpha \right ) =\ \sqrt {\frac {2}{\pi }}{\displaystyle \int \limits _{0}^{1}} x\ \sin \left (\alpha x\right ) \ dx \]

Notice, we integrate from zero, not from -1, since the sin transform is defined only for positive x. Integrating by parts, \(u=x,v=\frac {-\cos \left ( \alpha x\right ) }{\alpha }\), hence \(\int u\ dv\ =\) \(uv-\int du\ v\)

\begin {align*} g_{s}\left (\alpha \right ) & =\ \sqrt {\frac {2}{\pi }}\left \{ \left [ x\left (\frac {-\cos \left (\alpha x\right ) }{\alpha }\right ) \right ] _{0}^{1}-\ {\displaystyle \int \limits _{0}^{1}} \ \frac {-\cos \left (\alpha x\right ) }{\alpha }\ dx\right \} \\ & =\sqrt {\frac {2}{\pi }}\left \{ \frac {-1}{\alpha }\left [ x\ \cos \left ( \alpha x\right ) \right ] _{0}^{1}+\frac {1}{\alpha }\ {\displaystyle \int \limits _{0}^{1}} \ \cos \left (\alpha x\right ) \ dx\right \} \\ & =\sqrt {\frac {2}{\pi }}\left \{ \frac {-1}{\alpha }\left [ x\ \cos \left ( \alpha x\right ) \right ] _{0}^{1}+\frac {1}{\alpha }\ \left [ \frac {\sin \left ( \alpha x\right ) }{\alpha }\right ] _{0}^{1}\right \} \\ & =\sqrt {\frac {2}{\pi }}\frac {1}{\alpha }\left \{ -\left [ \ \cos \left ( \alpha \right ) -0\right ] +\ \frac {1}{\alpha }\ \left [ \sin \left (\alpha x\right ) \right ] _{0}^{1}\right \} \\ & =\sqrt {\frac {2}{\pi }}\frac {1}{\alpha }\left \{ -\cos \left (\alpha \right ) \ +\ \frac {1}{\alpha }\ \left [ \sin \left (\alpha \right ) -0\right ] ^{\ }\right \} \\ & =\sqrt {\frac {2}{\pi }}\frac {1}{\alpha }\left (-\cos \left (\alpha \right ) +\ \frac {1}{\alpha }\ \sin \left (\alpha \right ) \right ) \\ & =\sqrt {\frac {2}{\pi }}\frac {1}{\alpha }\left (\frac {1}{\alpha }\ \sin \left ( \alpha \right ) -\cos \left (\alpha \right ) \ ^{\ }\right ) \end {align*}

Hence the Sin Fourier transform of \(f\relax (x) \) is

\[ g_{s}\left (\alpha \right ) =\sqrt {\frac {2}{\pi }}\frac {1}{\alpha }\left ( \frac {1}{\alpha }\ \sin \left (\alpha \right ) -\cos \left (\alpha \right ) \ ^{\ }\right ) \]

To obtain \(f\relax (x) \) given its sin fourier transform \(g_{s}\left ( \alpha \right ) ,\) then we apply the inverse sin fourier transform

\begin {align} f_{s}\relax (x) & =\sqrt {\frac {2}{\pi }}\ {\displaystyle \int \limits _{0}^{\infty }} g_{s}\left (\alpha \right ) \ \sin \alpha x\ d\alpha \nonumber \\ & =\ \sqrt {\frac {2}{\pi }}\ {\displaystyle \int \limits _{0}^{\infty }} \sqrt {\frac {2}{\pi }}\frac {1}{\alpha }\left (\frac {1}{\alpha }\ \sin \alpha -\cos \alpha ^{\ }\right ) \ \sin \alpha x\ d\alpha \nonumber \\ & =\frac {2}{\pi }\ {\displaystyle \int \limits _{0}^{\infty }} \ \left (\frac {1}{\alpha ^{2}}\ \sin \alpha -\frac {1}{\alpha }\cos \alpha \right ) \ \sin \alpha x\ d\alpha \nonumber \\ & =\frac {2}{\pi }\ {\displaystyle \int \limits _{0}^{\infty }} \ \left (\frac {\sin \alpha -\alpha \cos \alpha }{\alpha ^{2}}\right ) \ \sin \alpha x\ \ d\alpha \tag {A0} \end {align}

Now we need to show that the above is the same as the inverse fourier transform found for problem 6. From back of the book, the IFT for problem 6 is given as

\[ f\relax (x) =\int _{-\infty }^{\infty }\frac {\sin \alpha -\alpha \cos \alpha }{i\pi \alpha ^{2}}e^{i\alpha x}d\alpha \]

Need to convert the above to \(f_{s}\relax (x) \). Since \(e^{i\alpha x}=\cos \alpha x+i\sin \alpha x\)

\begin {align} f\relax (x) & =\int _{-\infty }^{\infty }\frac {\sin \alpha -\alpha \cos \alpha }{i\pi \alpha ^{2}}\left (\cos \alpha x+i\sin \alpha x\right ) d\alpha \nonumber \\ & =\int _{-\infty }^{\infty }\frac {\left (\sin \alpha -\alpha \cos \alpha \right ) \cos \alpha x}{i\pi \alpha ^{2}}+\frac {\left (\sin \alpha -\alpha \cos \alpha \right ) i\sin \alpha x}{i\pi \alpha ^{2}}d\alpha \nonumber \\ & =\int _{-\infty }^{\infty }\frac {\left (\sin \alpha -\alpha \cos \alpha \right ) \cos \alpha x}{i\pi \alpha ^{2}}d\alpha +\int _{-\infty }^{\infty }\frac {\left ( \sin \alpha -\alpha \cos \alpha \right ) i\sin \alpha x}{i\pi \alpha ^{2}}d\alpha \tag {1} \end {align}

Looking at the first integral,

\begin {align*} & \int _{-\infty }^{\infty }\frac {\left (\overset {\text {odd}}{\overbrace {\sin \alpha }}-\overset {\text {odd}}{\overbrace {\alpha }}\overset {\text {even}}{\overbrace {\cos \alpha }}\right ) \overset {\text {even}}{\overbrace {\cos \alpha x}}}{i\pi \overset {\text {even}}{\overbrace {\alpha ^{2}}}}\ \ d\alpha \\ & =\int _{-\infty }^{\infty }\frac {\left (\text {odd}-\text {odd}\times \text {even}\right ) \times \text {even}}{\text {even}}\ \ d\alpha \\ & =\int _{-\infty }^{\infty }\frac {\left (\text {odd}-\text {odd}\ \right ) \times \text {even}}{\text {even}}\ \ d\alpha \\ & =\int _{-\infty }^{\infty }\frac {\text {odd\ }\times \text {even}}{\text {even}}\ \ d\alpha \\ & =\int _{-\infty }^{\infty }\frac {\text {odd}}{\text {even}}\ \ d\alpha \\ & =\int _{-\infty }^{\infty }\text {odd\ }\ d\alpha \end {align*}

Hence the integral vanishes. Hence (1) becomes

\begin {equation} f\relax (x) =\int _{-\infty }^{\infty }\frac {\left (\sin \alpha -\alpha \cos \alpha \right ) i\sin \alpha x}{i\pi \alpha ^{2}}d\alpha \tag {2} \end {equation}

Looking at the above

\begin {align*} \frac {\left (\overset {\text {odd}}{\overbrace {\sin \alpha }}-\overset {\text {odd}}{\overbrace {\alpha }}\overset {\text {even}}{\overbrace {\cos \alpha }}\right ) i\overset {\text {odd}}{\overbrace {\sin \alpha x}}}{i\pi \overset {\text {even}}{\overbrace {\alpha ^{2}}}} & =\frac {\left (\text {odd}-\text {odd}\times \text {even}\right ) \times \text {odd}}{\text {even}}\\ & =\frac {\text {odd}\ \ \times \text {odd}}{\text {even}}\\ & =\frac {\text {even}}{\text {even}}\\ & =\text {even} \end {align*}

Since the integrand is even, then \(\int _{-\infty }^{\infty }=2\int _{0}^{\infty }\) Hence (2) becomes

\begin {align} f\relax (x) & =2\int _{0}^{\infty }\frac {\left (\sin \alpha -\alpha \cos \alpha \right ) i\sin \alpha x}{i\pi \alpha ^{2}}\ \ d\alpha \tag {3}\\ & =\frac {2}{\pi }\int _{0}^{\infty }\frac {\left (\sin \alpha -\alpha \cos \alpha \right ) }{\alpha ^{2}}\sin \alpha x\ \ d\alpha \nonumber \end {align}

comparing this to equation (A1) above, we see that

\[ f_{s}\relax (x) =f\relax (x) \]

Which is what we are asked to show.

3.13.3 chapter 15, problem 4.20

Problem Find the fourier sin transform of the given \(f\left ( x\right ) \) and write \(f\relax (x) \) as a fourier integral. Verify the answer is the same as the exponential fourier transform.

\[ \ f(x)=\left \{ \begin {array} [c]{lll}\sin x & & \left \vert x\right \vert <\frac {\pi }{2}\\ \ & & \ \\ 0, & & \left \vert x\right \vert >\frac {\pi }{2}\end {array} \right . \]

Solution

Let \(\mathcal {F}_{s}f\relax (x) \) be the Fourier sin transform of \(f\relax (x) \) defined as \(g_{s}\left (\alpha \right ) =\mathcal {F}_{s}f\relax (x) =\sqrt {\frac {2}{\pi }}{\displaystyle \int \limits _{0}^{\infty }} f\relax (x) \ \sin \left (\alpha x\right ) \ dx\). Hence, for the function above we get

\[ g_{s}\left (\alpha \right ) =\ \sqrt {\frac {2}{\pi }}{\displaystyle \int \limits _{0}^{1}} \sin x\ \sin \left (\alpha x\right ) \ dx \]

Notice, we integrate from zero, not from -1, since the sin transform is defined only for positive \(x\). Since \(\sin \beta \sin \gamma =\frac {1}{2}\cos \left (\beta -\gamma \right ) -\frac {1}{2}\cos \left (\beta +\gamma \right ) \) Then \(\sin x\ \sin \left (\alpha x\right ) =\frac {1}{2}\cos \left (x-\alpha x\right ) -\frac {1}{2}\cos \left (x+\alpha x\right ) \). Hence

\begin {align*} g_{s}\left (\alpha \right ) & =\ \sqrt {\frac {2}{\pi }}{\displaystyle \int \limits _{0}^{1}} \frac {1}{2}\cos \left (x-\alpha x\right ) -\frac {1}{2}\cos \left (x+\alpha x\right ) \ dx\\ & =\frac {1}{2}\sqrt {\frac {2}{\pi }}\left \{ \left [ \frac {\sin \left (x-\alpha x\right ) }{1-\alpha }\right ] _{0}^{1}-\left [ \frac {\sin \left (x+\alpha x\right ) }{1+\alpha }\right ] _{0}^{1}\right \} \\ & =\frac {1}{2}\sqrt {\frac {2}{\pi }}\left \{ \left [ \frac {\sin \left ( 1-\alpha \right ) }{1-\alpha }-0\right ] -\left [ \frac {\sin \left ( 1+\alpha \right ) }{1+\alpha }-0\right ] _{0}^{1}\right \} \\ & =\frac {1}{2}\sqrt {\frac {2}{\pi }}\left (\frac {\sin \left (1-\alpha \right ) }{1-\alpha }-\frac {\sin \left (1+\alpha \right ) }{1+\alpha }\right ) \end {align*}

Hence the Sin Fourier transform of \(f\relax (x) \) is

\[ g_{s}\left (\alpha \right ) =\frac {1}{2}\sqrt {\frac {2}{\pi }}\left (\frac {\sin \left (1-\alpha \right ) }{1-\alpha }-\frac {\sin \left (1+\alpha \right ) }{1+\alpha }\right ) \]

Therefore, to obtain \(f\relax (x) \) given its sin fourier transform \(g_{s}\left (\alpha \right ) \), we apply the inverse sin fourier transform

\begin {align} f_{s}\relax (x) & =\sqrt {\frac {2}{\pi }}\ {\displaystyle \int \limits _{0}^{\infty }} g_{s}\left (\alpha \right ) \ \sin \alpha x\ d\alpha \nonumber \\ & =\ \sqrt {\frac {2}{\pi }}\ {\displaystyle \int \limits _{0}^{\infty }} \frac {1}{2}\sqrt {\frac {2}{\pi }}\left (\frac {\sin \left (1-\alpha \right ) }{1-\alpha }-\frac {\sin \left (1+\alpha \right ) }{1+\alpha }\right ) \ \sin \alpha x\ d\alpha \nonumber \\ & =\frac {1}{\pi }\ {\displaystyle \int \limits _{0}^{\infty }} \ \left (\frac {\sin \left (1-\alpha \right ) }{1-\alpha }-\frac {\sin \left ( 1+\alpha \right ) }{1+\alpha }\right ) \ \sin \alpha x\ d\alpha \tag {1} \end {align}

Now we need to show that the above is the same as the exponential inverse fourier transform found for problem 12. The exponential IFT for problem 12 is

\begin {equation} f\relax (x) =\frac {1}{\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} \ \frac {\alpha \ i\ \cos \left (\alpha \frac {\pi }{2}\right ) }{\alpha ^{2}-1}\ \ e^{i\alpha x}\ d\alpha \tag {2} \end {equation}

So Need to show that (1) and (2) are the same. Need to convert the above (1) to \(f_{s}\relax (x) \) in (2)\(.\)Since \(e^{i\alpha x}=\cos \alpha x+i\sin \alpha x\), (2) can be written as

\begin {align} f\relax (x) & =\frac {1}{\pi }\int _{-\infty }^{\infty }\frac {\alpha \ i\ \cos \left (\alpha \frac {\pi }{2}\right ) }{\alpha ^{2}-1}\ \left ( \cos \alpha x+i\sin \alpha x\right ) d\alpha \nonumber \\ & =\frac {1}{\pi }\left [ \int _{-\infty }^{\infty }\frac {\alpha \ i\ \cos \left ( \alpha \frac {\pi }{2}\right ) }{\alpha ^{2}-1}\cos \alpha x\ \ d\alpha +\int _{-\infty }^{\infty }\frac {\alpha \ i\ \cos \left (\alpha \frac {\pi }{2}\right ) }{\alpha ^{2}-1}\ i\sin \alpha x\ \ d\alpha \right ] \tag {3} \end {align}

Looking at the first integral,

\begin {align*} & \int _{-\infty }^{\infty }\frac {\overset {\text {odd}}{\overbrace {\alpha }}\ i\ \overset {\text {even}}{\overbrace {\cos \left (\alpha \frac {\pi }{2}\right ) }}}{\overset {\text {even}}{\overbrace {\alpha ^{2}}}-1}\overset {\text {even}}{\overbrace {\cos \alpha x}}\ \ d\alpha \\ & \\ & =\int _{-\infty }^{\infty }\frac {\left (\text {odd}\times \ \text {even}\right ) \times \text {even}}{\text {even}}\ \ d\alpha \\ & =\int _{-\infty }^{\infty }\frac {\text {odd}\ \times \text {even}}{\text {even}}\ \ d\alpha \\ & =\int _{-\infty }^{\infty }\frac {\text {odd}}{\text {even}}\ \ d\alpha \\ & =\int _{-\infty }^{\infty }\text {odd}\ \ d\alpha \end {align*}

Hence the integral vanishes. So (3) becomes

\begin {align*} f\relax (x) & =0+\frac {1}{\pi }\int _{-\infty }^{\infty }\frac {\alpha \ i\ \cos \left (\alpha \frac {\pi }{2}\right ) }{\alpha ^{2}-1}\ i\sin \alpha x\ \ d\alpha \\ & =\frac {1}{\pi }\int _{-\infty }^{\infty }\frac {\alpha \ i\ \cos \left ( \alpha \frac {\pi }{2}\right ) }{\alpha ^{2}-1}\ i\sin \alpha x\ \ d\alpha \end {align*}

Looking at the above integrand,

\begin {align*} \frac {\overset {\text {odd}}{\overbrace {\alpha }}\ i\ \overset {\text {even}}{\overbrace {\cos \left (\alpha \frac {\pi }{2}\right ) }}}{\overset {\text {even}}{\overbrace {\alpha ^{2}}}-1}\ i\overset {\text {odd}}{\overbrace {\sin \alpha x}} & =\frac {\left (\text {odd}\ \times \text {even}\right ) \times \text {odd}}{\text {even}}\\ & =\frac {\text {odd}\ \ \times \text {odd}}{\text {even}}\\ & =\frac {\text {even}}{\text {even}}\\ & =\text {even} \end {align*}

Since the integrand is even, then \(\int _{-\infty }^{\infty }=2\int _{0}^{\infty }\). Hence (2) becomes

\begin {align*} f\relax (x) & =\frac {2}{\pi }\int _{0}^{\infty }\frac {\alpha \ i\ \cos \left (\alpha \frac {\pi }{2}\right ) }{\alpha ^{2}-1}\ i\sin \alpha x\ \ d\alpha \\ & =\frac {-2}{\pi }\int _{0}^{\infty }\frac {\alpha \ \ \cos \left (\alpha \frac {\pi }{2}\right ) }{\alpha ^{2}-1}\ \sin \alpha x\ \ d\alpha \\ & =\frac {2}{\pi }\int _{0}^{\infty }\frac {\alpha \ \ \cos \left (\alpha \frac {\pi }{2}\right ) }{1-\alpha ^{2}}\ \sin \alpha x\ \ d\alpha \end {align*}

But \(1-\alpha ^{2}=\left (1+\alpha \right ) \left (1-\alpha \right ) \), therefore

\[ f\relax (x) =\frac {2}{\pi }\int _{0}^{\infty }\frac {\alpha \ \ \cos \left ( \alpha \frac {\pi }{2}\right ) }{\left (1+\alpha \right ) \left (1-\alpha \right ) }\ \sin \alpha x\ \ d\alpha \]

But \(\cos \left (\alpha \frac {\pi }{2}\right ) \sin \alpha x=\frac {1}{2}\left ( -\sin \left (\alpha \frac {\pi }{2}-\alpha x\right ) +\sin \left (\alpha \frac {\pi }{2}+\alpha x\right ) \right ) \), hence the above becomes

\begin {align*} f\relax (x) & =\frac {2}{\pi }\int _{0}^{\infty }\frac {\alpha \ \ \frac {1}{2}\left (-\sin \left (\alpha \frac {\pi }{2}-\alpha x\right ) +\sin \left ( \alpha \frac {\pi }{2}+\alpha x\right ) \right ) }{\left (1+\alpha \right ) \left (1-\alpha \right ) }\ \ \ d\alpha \\ f\relax (x) & =\frac {1}{\pi }\int _{0}^{\infty }\frac {\alpha \ \ \left ( -\sin \left (\alpha \frac {\pi }{2}-\alpha x\right ) +\sin \left (\alpha \frac {\pi }{2}+\alpha x\right ) \right ) }{\left (1+\alpha \right ) \left ( 1-\alpha \right ) }\ \ \ d\alpha \\ f\relax (x) & =\frac {1}{\pi }\int _{0}^{\infty }\frac {\alpha \sin \left ( \alpha \frac {\pi }{2}+\alpha x\right ) }{\left (1+\alpha \right ) \left ( 1-\alpha \right ) }-\frac {\ \ \alpha \sin \left (\alpha \frac {\pi }{2}-\alpha x\right ) }{\left (1+\alpha \right ) \left (1-\alpha \right ) }\ \ \ d\alpha \end {align*}

3.13.4 chapter 15, problem 4.21

Problem Find the fourier transform of the given \(f\relax (x) \) \(=e^{\frac {-x^{2}}{2\sigma ^{2}}}\)

Solution

Let \(\digamma \left (\alpha \right ) \) be the Fourier sin transform of \(f\relax (x) \) defined as
\[ \digamma \left (\alpha \right ) =\frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} f\relax (x) \ e^{-i\alpha x}\ dx \]

So, for the function above we get

\begin {align} \digamma \left (\alpha \right ) & =\ \frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} e^{\frac {-x^{2}}{2\sigma ^{2}}}\ e^{-i\alpha x}\ dx\nonumber \\ & =\ \frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} e^{\frac {-x^{2}}{2\sigma ^{2}}-i\alpha x}\ dx\nonumber \\ & =\ \frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} e^{\ \frac {-x^{2}-i\alpha x\left (2\sigma ^{2}\right ) }{2\sigma ^{2}}}\ dx\nonumber \\ & =\ \frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} e^{\ \frac {-x^{2}-2i\alpha \sigma ^{2}x\ }{2\sigma ^{2}}}\ dx \tag {1} \end {align}

looking at the exponent \(\frac {-x^{2}-2i\alpha \sigma ^{2}x\ }{2\sigma ^{2}}\). completing the square in \(x\) gives

\[ x^{2}+2i\alpha \sigma ^{2}x\ =\left (x+Z\ \right ) ^{2}-Y \]

Solving for \(Z,Y\) gives

\[ x^{2}+2i\alpha \sigma ^{2}x\ =x^{2}+2xZ+Z^{2}-Y\ \]

Therefore \(Z=i\alpha \sigma ^{2},Z^{2}-Y=0\), and \(Y=-\alpha ^{2}\sigma ^{4}\). Hence Exponent can be written as

\begin {align*} \frac {x^{2}+2i\alpha \sigma ^{2}x\ }{-2\sigma ^{2}} & =\frac {\left ( x+i\alpha \sigma ^{2}\ \right ) ^{2}-\left (-\alpha ^{2}\sigma ^{4}\right ) }{-2\sigma ^{2}}\\ & =\frac {\left (x+i\alpha \sigma ^{2}\ \right ) ^{2}+\alpha ^{2}\sigma ^{4}}{-2\sigma ^{2}}\\ & =\frac {\left (x+i\alpha \sigma ^{2}\ \right ) ^{2}}{-2\sigma ^{2}}-\frac {\alpha ^{2}\sigma ^{4}}{2\sigma ^{2}}\\ & =\frac {\left (x+i\alpha \sigma ^{2}\ \right ) ^{2}}{-2\sigma ^{2}}-\frac {\alpha ^{2}\sigma ^{2}}{2} \end {align*}

The integral (1) becomes

\begin {align*} \digamma \left (\alpha \right ) & =\frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} e^{\ \frac {\left (x+i\alpha \sigma ^{2}\ \right ) ^{2}}{-2\sigma ^{2}}-\frac {\alpha ^{2}\sigma ^{2}}{2}}\ dx\\ & =\frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} e^{\ \frac {\left (x+i\alpha \sigma ^{2}\ \right ) ^{2}}{-2\sigma ^{2}}}\ e^{-\frac {\alpha ^{2}\sigma ^{2}}{2}}\ dx \end {align*}

Moving \(e^{-\frac {\alpha ^{2}\sigma ^{2}}{2}}\) outside the integral because it does not depend on \(x\) gives

\[ \digamma \left (\alpha \right ) =\frac {e^{-\frac {\alpha ^{2}\sigma ^{2}}{2}}}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} e^{\ \frac {\left (x+i\alpha \sigma ^{2}\ \right ) ^{2}}{-2\sigma ^{2}}}\ \ dx \]

Let \(y=x+i\alpha \sigma ^{2}\), \(dy=dx\) and the limits do not change. Hence we get

\[ \digamma \left (\alpha \right ) =\frac {e^{-\frac {\alpha ^{2}\sigma ^{2}}{2}}}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} e^{\ \frac {y\ ^{2}}{-2\sigma ^{2}}}\ \ dy \]

Since the exponential function is raised to a square power, then we can write \({\displaystyle \int \limits _{-\infty }^{\infty }} e^{\ y^{2}}=2{\displaystyle \int \limits _{0}^{\infty }} e^{\ y^{2}}\ \) (since even function). Hence above integral becomes

\[ \digamma \left (\alpha \right ) =\frac {e^{-\frac {\alpha ^{2}\sigma ^{2}}{2}}}{\pi }{\displaystyle \int \limits _{0}^{\infty }} e^{\ \frac {y\ ^{2}}{-2\sigma ^{2}}}\ \ dy \]

Let \(\zeta =\frac {y}{\sqrt {2}\sigma }\) \(,\) then \(y=\sqrt {2}\sigma \zeta \), and \(y^{2}=2\sigma ^{2}\zeta ^{2}\). Hence \(d\zeta =\frac {1}{\sqrt {2}\sigma }dy\) and the above integral becomes

\begin {align} \digamma \left (\alpha \right ) & =\frac {e^{-\frac {\alpha ^{2}\sigma ^{2}}{2}}}{\pi }{\displaystyle \int \limits _{0}^{\infty }} e^{\ -\zeta ^{2}}\ \ \sqrt {2}\sigma \ d\zeta \nonumber \\ \digamma \left (\alpha \right ) & =\sqrt {2}\sigma \frac {e^{-\frac {\alpha ^{2}\sigma ^{2}}{2}}}{\pi }{\displaystyle \int \limits _{0}^{\infty }} e^{\ -\zeta ^{2}}\ \ d\zeta \tag {2} \end {align}

Now from equation 9.5 on page 468

\begin {align*} \frac {2}{\sqrt {\pi }}{\displaystyle \int \limits _{0}^{\infty }} e^{\ -\zeta ^{2}}\ \ d\zeta & =1\\{\displaystyle \int \limits _{0}^{\infty }} e^{\ -\zeta ^{2}}\ \ d\zeta & =\frac {\sqrt {\pi }}{2} \end {align*}

Hence (2) becomes

\begin {align*} \digamma \left (\alpha \right ) & =\sqrt {2}\sigma \frac {e^{-\frac {\alpha ^{2}\sigma ^{2}}{2}}}{\pi }\left (\frac {\sqrt {\pi }}{2}\right ) \\ \digamma \left (\alpha \right ) & =\ \frac {\sigma }{\sqrt {2\pi }}\ e^{-\frac {\alpha ^{2}\sigma ^{2}}{2}} \end {align*}

Which is what we are asked to show.

3.13.5 chapter 15, problem 4.23

Problem Show that

\(\int _{0}^{\infty }\frac {1-\cos \pi \alpha }{\alpha }\sin \alpha \ d\alpha =\frac {\pi }{2}\) and \(\int _{0}^{\infty }\frac {1-\cos \pi \alpha }{\alpha }\sin \pi \alpha \ d\alpha =\frac {\pi }{4}\)

Solution

From problem 17, the Fourier sin transform for \(f\relax (x) \) shown in problem 3 is

\[ g_{s}\left (\alpha \right ) =\frac {\sqrt {2}\left (1-\cos \pi \alpha \right ) }{\sqrt {\pi }\alpha }\]

From equation 4.14 page 651, \(f\relax (x) \) can be obtained from inverse sin transform is

\begin {align} f_{s}\relax (x) & =\sqrt {\frac {2}{\pi }}\int _{0}^{\infty }g_{s}\left ( \alpha \right ) \sin \alpha x\ d\alpha \nonumber \\ & =\sqrt {\frac {2}{\pi }}\int _{0}^{\infty }\left (\frac {\sqrt {2}\left ( 1-\cos \pi \alpha \right ) }{\sqrt {\pi }\alpha }\right ) \sin \alpha x\ d\alpha \nonumber \\ & =\frac {2}{\pi }\int _{0}^{\infty }\frac {\left (1-\cos \pi \alpha \right ) }{\alpha }\sin \alpha x\ d\alpha \tag {1} \end {align}

Now, from the definition of \(f\relax (x) \), which is

\[ \ f(x)=\left \{ \begin {array} [c]{lll}-1 & & -\pi <x<0\\ \ 1 & & \ 0<x<\pi \\ 0, & & \left \vert x\right \vert >\pi \end {array} \right . \]

We see that for \(x=1\), \(f\relax (x) =1\), hence substitute in (1) we get

\begin {align*} 1 & =-\frac {2}{\pi }\int _{0}^{\infty }\frac {\left (1-\cos \pi \alpha \right ) }{\alpha }\sin \alpha \ d\alpha \\ \frac {\pi }{2} & =\int _{0}^{\infty }\frac {\left (1-\cos \pi \alpha \right ) }{\alpha }\sin \alpha \ d\alpha \end {align*}

Which is the first result we required to show. For the second result, let \(x=\pi \) hence \(f\left (\pi \right ) =\ \)average value of \(f\relax (x) \) at \(x=\pi \).  Which is given by \(\frac {f\left (\pi _{-}\right ) +f\left ( \pi _{+}\right ) }{2}=\frac {1+0}{2}=\frac {1}{2}\). Hence substitute in (1) we get

\begin {align*} f_{s}\left (x=\pi \right ) & =\frac {1}{2}=\frac {2}{\pi }\int _{0}^{\infty }\frac {\left (1-\cos \pi \alpha \right ) }{\alpha }\sin \alpha \pi \ d\alpha \\ \frac {\pi }{4} & =\int _{0}^{\infty }\frac {\left (1-\cos \pi \alpha \right ) }{\alpha }\sin \alpha \pi \ d\alpha \end {align*}

Which is the second result we are asked to show.

3.13.6 chapter 15, problem 4.25

Problem Show that

(a) represent as an exponential fourier transform the function

\[ \ f(x)=\left \{ \begin {array} [c]{lll}\sin x & & 0<x<\pi \\ \ \ & & \ \ \\ 0, & & \text {otherwise}\end {array} \right . \]

(b) Show that the result can be written as

\[ f\relax (x) =\frac {1}{\pi }\int _{0}^{\infty }\frac {\cos \alpha x+\cos \alpha \left (x-\pi \right ) }{1-\alpha ^{2}}d\alpha \]

Solution

The exponential Fourier transform is defined as

\[ g\left (\alpha \right ) =\frac {1}{2\pi }\int _{-\infty }^{\infty }f\left ( x\right ) e^{-i\alpha x}\ dx \]

Applying the function \(f\relax (x) \) gives

\[ g\left (\alpha \right ) =\frac {1}{2\pi }\int _{0}^{\pi }\sin x\ e^{-i\alpha x}\ dx \]

But

\[ \sin x=\frac {e^{ix}-e^{-ix}}{2i}\]

Hence the transform can be written as

\begin {align*} g\left (\alpha \right ) & =\frac {1}{2\pi }\int _{0}^{\pi }\frac {e^{ix}-e^{-ix}}{2i}\ e^{-i\alpha x}\ dx\\ & =\frac {1}{4i\pi }\int _{0}^{\pi }e^{ix-i\alpha x}-e^{-ix-i\alpha x}\ \ dx\\ & =\frac {1}{4i\pi }\int _{0}^{\pi }e^{x\left (i-i\alpha \right ) }-e^{x\left ( -i-i\alpha \right ) }\ \ dx\\ & =\frac {1}{4i\pi }\left (\left [ \ \frac {e^{x\left (i-i\alpha \right ) }}{i-i\alpha }\right ] _{0}^{\pi }\ -\left [ \ \frac {e^{x\left (-i-i\alpha \right ) }}{-i-i\alpha }\right ] _{0}^{\pi }\right ) \\ & =\frac {1}{4i\pi }\left (\left [ \ \frac {e^{\pi \left (i-i\alpha \right ) }}{i-i\alpha }-\frac {1}{i-i\alpha }\right ] \ -\left [ \ \frac {e^{\pi \left ( -i-i\alpha \right ) }}{-i-i\alpha }-\ \frac {1}{-i-i\alpha }\right ] \right ) \\ & =\frac {1}{4i\pi }\left (\frac {1}{i-i\alpha }\left [ \ e^{\pi \left ( i-i\alpha \right ) }-1\right ] \ -\frac {1}{-i-i\alpha }\left [ \ e^{\pi \left ( -i-i\alpha \right ) }-\ 1\right ] \right ) \\ & =\frac {1}{4i\pi }\left (\frac {1}{i-i\alpha }\left [ \ e^{\pi \left ( i-i\alpha \right ) }-1\right ] \ +\frac {1}{i+i\alpha }\left [ \ e^{\pi \left ( -i-i\alpha \right ) }-\ 1\right ] \right ) \ \\ & =\frac {1}{i}\frac {1}{4i\pi }\left (\frac {1}{1-\alpha }\left [ \ e^{\pi \left (i-i\alpha \right ) }-1\right ] \ +\frac {1}{1+\alpha }\left [ \ e^{\pi \left (-i-i\alpha \right ) }-\ 1\right ] \right ) \ \\ & =\ \frac {-1}{4\pi }\left (\frac {e^{\pi \left (i-i\alpha \right ) }}{1-\alpha }-\frac {1}{1-\alpha }\ +\frac {e^{\pi \left (-i-i\alpha \right ) }}{1+\alpha }-\ \frac {1}{1+\alpha }\right ) \\ & =\ \frac {-1}{4\pi }\left (\frac {\left (1+\alpha \right ) e^{\pi \left ( i-i\alpha \right ) }+\left (1-\alpha \right ) e^{\pi \left (-i-i\alpha \right ) }}{\left (1-\alpha \right ) \left (1+\alpha \right ) }\ -\frac {\left ( 1+\alpha \right ) +\left (1-\alpha \right ) }{\left (1-\alpha \right ) \left ( 1+\alpha \right ) }\ \right ) \\ & =\ \frac {-1}{4\pi }\left (\frac {\left (1+\alpha \right ) e^{\pi \left ( i-i\alpha \right ) }+\left (1-\alpha \right ) e^{\pi \left (-i-i\alpha \right ) }}{\left (1-\alpha ^{2}\right ) }\ -\frac {2}{\left (1-\alpha ^{2}\right ) }\ \right ) \\ & =\ \frac {-1}{\left (1-\alpha ^{2}\right ) 4\pi }\left (e^{\pi \left ( i-i\alpha \right ) }+\alpha e^{\pi \left (i-i\alpha \right ) }+e^{\pi \left ( -i-i\alpha \right ) }-\alpha e^{\pi \left (-i-i\alpha \right ) }\ \ -2\right ) \\ & =\ \frac {-1}{\left (1-\alpha ^{2}\right ) 4\pi }\left (e^{\pi i\ }e^{-i\pi \alpha }+\alpha e^{\pi i\ }e^{-i\pi \alpha }+e^{-\pi i\ }e^{-i\pi \alpha }-\alpha e^{-\pi i\ }e^{-i\pi \alpha }\ \ -2\right ) \end {align*}

But \(e^{\pi i\ }=-1\) and \(e^{-\pi i\ }=-1\)

\begin {align*} g\left (\alpha \right ) & =\ \frac {-1}{\left (1-\alpha ^{2}\right ) 4\pi }\left (-e^{-i\pi \alpha }-\overbrace {\alpha e^{-i\pi \alpha }}-e^{-i\pi \alpha }+\overbrace {\alpha e^{-i\pi \alpha }}\ \ -2\right ) \\ g\left (\alpha \right ) & =\ \frac {-1}{\left (1-\alpha ^{2}\right ) 4\pi }\left (-e^{-i\pi \alpha }\ -e^{-i\pi \alpha }-2\right ) \\ g\left (\alpha \right ) & =\ \frac {1}{\left (1-\alpha ^{2}\right ) 4\pi }\left (e^{-i\pi \alpha }\ +e^{-i\pi \alpha }+2\right ) \\ g\left (\alpha \right ) & =\ \frac {2e^{-i\pi \alpha }\ +2}{\left ( 1-\alpha ^{2}\right ) 4\pi } \end {align*}

Hence the exponential fourier transform is

\[ g\left (\alpha \right ) =\ \frac {e^{-i\pi \alpha }\ +1}{\left (1-\alpha ^{2}\right ) 2\pi }\]

Therefore \(f\relax (x) \) can be rewritten as

\begin {align} f\relax (x) & =\ \int _{-\infty }^{\infty }g\left (\alpha \right ) \ e^{i\alpha x}\ d\alpha \nonumber \\ & =\ \int _{-\infty }^{\infty }\frac {e^{-i\pi \alpha }\ +1}{\left (1-\alpha ^{2}\right ) 2\pi }\ e^{i\alpha x}\ d\alpha \nonumber \\ & =\ \frac {1}{2\pi }\int _{-\infty }^{\infty }\frac {1+e^{-i\pi \alpha }\ }{\left ( 1-\alpha ^{2}\right ) }\ e^{i\alpha x}\ d\alpha \tag {1} \end {align}

Which is the answer required to show.

Part(b)

Now need to show that the above can be written as \[ f\relax (x) =\frac {1}{\pi }\int _{0}^{\infty }\frac {\cos \alpha x+\cos \alpha \left (x-\pi \right ) }{1-\alpha ^{2}}d\alpha \]

From (1)

\begin {align*} f\relax (x) & =\frac {1}{2\pi }\int _{-\infty }^{\infty }\frac {1+e^{-i\pi \alpha }\ }{\left (1-\alpha ^{2}\right ) }\ e^{i\alpha x}\ d\alpha \\ & =\frac {1}{2\pi }\int _{-\infty }^{\infty }\frac {e^{i\alpha x}+e^{i\alpha x}e^{-i\pi \alpha }\ }{\left (1-\alpha ^{2}\right ) }\ d\alpha \\ & =\frac {1}{2\pi }\int _{-\infty }^{\infty }\frac {e^{i\alpha x}+e^{i\alpha x-i\pi \alpha }\ }{\left (1-\alpha ^{2}\right ) }\ d\alpha \\ & =\frac {1}{2\pi }\int _{-\infty }^{\infty }\frac {e^{i\alpha x}+e^{i\alpha \left ( x-\pi \right ) }\ }{\left (1-\alpha ^{2}\right ) }\ d\alpha \\ & =\frac {1}{2\pi }\int _{-\infty }^{\infty }\frac {2\left (\cos \alpha x+\cos \alpha \left (x-\pi \right ) \right ) \ }{\left (1-\alpha ^{2}\right ) }\ d\alpha \\ & =\frac {1}{\pi }\int _{-\infty }^{\infty }\frac {\cos \alpha x+\cos \alpha \left ( x-\pi \right ) \ }{\left (1-\alpha ^{2}\right ) }\ d\alpha \end {align*}

Which is what is required to show.

3.13.7 chapter 15, problem 4.3

Problem Find the exponential fourier transform of the given \(f\left ( x\right ) \) and write \(f\relax (x) \) as a fourier integral.\[ \ f(x)=\left \{ \begin {array} [c]{lll}-1, & & -\pi <x<0\\ 1, & & 0<x<\pi \\ 0, & & \left \vert x\right \vert >\pi \end {array} \right . \] Solution

Let \(\digamma \left (\alpha \right ) \) be the Fourier transform of \(f\left ( x\right ) \) defined as \(\digamma \left (\alpha \right ) =\frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} f\relax (x) \ e^{-i\alpha x}\ dx\), hence\begin {align*} \ \digamma \left (\alpha \right ) & =\frac {1}{2\pi }\ {\displaystyle \int \limits _{-\infty }^{\infty }} f\relax (x) \ e^{-i\alpha x}\ dx\\ 2\pi \ \digamma \left (\alpha \right ) & =\ {\displaystyle \int \limits _{-\pi }^{0}} -\ e^{-i\alpha x}\ dx+{\displaystyle \int \limits _{0}^{\pi }} \ e^{-i\alpha x}\ dx\\ & =\ -\left [ \ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-\pi }^{0}\ +\left [ \ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{0}^{\pi }\\ & =\ \frac {1}{i\alpha }\left [ \ e^{-i\alpha x}\right ] _{-\pi }^{0}-\frac {1}{i\alpha }\left [ \ e^{-i\alpha x}\right ] _{0}^{\pi }\\ & =\frac {1}{i\alpha }\left [ \ e^{0}-e^{i\alpha \pi }\right ] -\frac {1}{i\alpha }\left [ \ e^{-i\alpha \pi }-e^{0}\right ] _{0}^{\pi }\\ & =\frac {1}{i\alpha }\left [ \ 1-e^{i\alpha \pi }\right ] -\frac {1}{i\alpha }\left [ \ e^{-i\alpha \pi }-1\right ] _{0}^{\pi }\\ & =\frac {1}{i\alpha }-\frac {e^{i\alpha \pi }}{i\alpha }-\frac {e^{-i\alpha \pi }}{i\alpha }\ +\frac {1}{i\alpha }\\ & =\frac {2}{i\alpha }-\frac {1}{i\alpha }\left (e^{i\alpha \pi }+e^{-i\alpha \pi }\right ) \end {align*}

But \(e^{i\alpha \pi }+e^{-i\alpha \pi }=2\cos \alpha \pi \). Hence\begin {align*} 2\pi \ \digamma \left (\alpha \right ) & =\frac {2}{i\alpha }-\frac {1}{i\alpha }\left (2\cos \alpha \pi \right ) \\ & =\ \frac {2}{i\alpha }\left (1-\cos \alpha \pi \right ) \end {align*}

Hence the Fourier transform of \(f\relax (x) \) is\begin {align*} \digamma \left (\alpha \right ) & =\frac {1}{2\pi }\left [ \ \frac {2}{i\alpha }\left (1-\cos \alpha \pi \right ) \right ] \\ & =\ \frac {1}{\pi \alpha i}\ \left (1-\cos \alpha \pi \right ) \end {align*}

To obtain \(f\relax (x) \) given its fourier transform \(\digamma \left ( \alpha \right ) ,\) then we apply the inverse fourier transform\begin {align*} f\relax (x) & =\ {\displaystyle \int \limits _{-\infty }^{\infty }} \digamma \left (\alpha \right ) \ e^{i\alpha x}\ d\alpha \\ & =\ {\displaystyle \int \limits _{-\infty }^{\infty }} \frac {1}{\pi \alpha i}\ \left (1-\cos \alpha \pi \right ) \ e^{i\alpha x}\ d\alpha \\ & =\frac {1}{\pi i}{\displaystyle \int \limits _{-\infty }^{\infty }} \ \frac {1}{\alpha }\left (1-\ \cos \alpha \pi \right ) \ e^{i\alpha x}\ d\alpha \end {align*}

3.13.8 chapter 15, problem 4.5

Problem Find the exponential fourier transform of the given \(f\left ( x\right ) \) and write \(f\relax (x) \) as a fourier integral.\[ \ f(x)=\left \{ \begin {array} [c]{lll}1, & & 0<x<1\\ \ & & \ \\ 0, & & \text {otherwise}\end {array} \right . \] Solution

Let \(\digamma \relax (s) \) be the Fourier transform of \(f\left ( x\right ) \) defined as \(\digamma \relax (s) =\frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} f\relax (x) \ e^{-i\alpha x}\ dx\)\begin {align*} \digamma \relax (s) & =\frac {1}{2\pi }\ {\displaystyle \int \limits _{-\infty }^{\infty }} f\relax (x) \ e^{-isx}\ dx\\ 2\pi \ \digamma \relax (s) & =\ {\displaystyle \int \limits _{0}^{1}} e^{-isx}\ dx\ \\ & =\ \ \left [ \ \frac {e^{-isx}}{-is}\right ] _{0}^{1}\ \ \\ & =\ \frac {-1}{is}\left [ \ e^{-isx}\right ] _{0}^{1}\ \\ & =\frac {-1}{is}\left [ \ e^{-is}-e^{0}\right ] \ \\ & =\frac {-1}{is}\left [ \ e^{-is}-1\right ] \ \end {align*}

Hence the Fourier transform of \(f\relax (x) \) is\begin {align*} \digamma \relax (s) & =\frac {1}{2\pi }\left [ \ \frac {-1}{is}\left [ \ e^{-is}-1\right ] \right ] \\ & =\ \frac {i}{2\pi s}\ \left (e^{-is}-1\right ) \end {align*}

To obtain \(f\relax (x) \) given its fourier transform \(\digamma \left ( s\right ) ,\) then we apply the inverse fourier transform\begin {align*} f\relax (x) & =\ {\displaystyle \int \limits _{-\infty }^{\infty }} \digamma \relax (s) \ e^{isx}\ ds\\ & =\ {\displaystyle \int \limits _{-\infty }^{\infty }} \ \frac {i}{2\pi s}\ \left (e^{-is}-1\right ) \ e^{isx}\ ds\\ & =\frac {i}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} \ \frac {1}{s}\left (e^{-is}-1\right ) \ e^{isx}\ ds \end {align*}

3.13.9 chapter 15, problem 4.7

Problem Find the exponential fourier transform of the given \(f\left ( x\right ) \) and write \(f\relax (x) \) as a fourier integral.

\[ \ f(x)=\left \{ \begin {array} [c]{lll}\left \vert x\right \vert & & \left \vert x\right \vert <1\\ \ & & \ \\ 0, & & \left \vert x\right \vert >1 \end {array} \right . \]

Solution

Let \(\digamma \left (\alpha \right ) \) be the Fourier transform of \(f\left ( x\right ) \) defined as \(\digamma \left (\alpha \right ) =\frac {1}{2\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} f\relax (x) \ e^{-i\alpha x}\ dx\)

\begin {align*} \ \digamma \left (\alpha \right ) & =\frac {1}{2\pi }\ {\displaystyle \int \limits _{-\infty }^{\infty }} f\relax (x) \ e^{-i\alpha x}\ dx\\ 2\pi \ \digamma \left (\alpha \right ) & =\ {\displaystyle \int \limits _{-1}^{0}} -x\ \ e^{-i\alpha x}\ dx\ +{\displaystyle \int \limits _{0}^{1}} x\ \ e^{-i\alpha x}\ dx\ \end {align*}

Integrating by parts, \(u=x,v=\frac {e^{-i\alpha x}}{-i\alpha }\), hence \(\int u\ dv\ =\) \(uv-\int du\ v\). The first integral is

\begin {align*} {\displaystyle \int \limits _{-1}^{0}} -x\ \ e^{-i\alpha x}\ dx & =\ \left [ \left (-x\right ) \ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{-1}^{0}+{\displaystyle \int \limits _{-1}^{0}} \ \ \frac {e^{-i\alpha x}}{-i\alpha }\ dx\\ & =\ \left [ \relax (x) \ \frac {e^{-i\alpha x}}{i\alpha }\right ] _{-1}^{0}+{\displaystyle \int \limits _{-1}^{0}} \ \ \frac {e^{-i\alpha x}}{-i\alpha }\ dx\\ & =\frac {1}{i\alpha }\ \ \left [ 0-(-1)\times e^{i\alpha }\right ] -\frac {1}{i\alpha }{\displaystyle \int \limits _{-1}^{0}} \ e^{-i\alpha x}\ dx\ \\ & =\frac {1}{i\alpha }\ \ \left [ e^{i\alpha }\right ] -\frac {1}{i\alpha }\left [ \ \frac {e^{-i\alpha x}\ }{-i\alpha }\right ] _{-1}^{0}\\ & =\frac {1}{i\alpha }\ \ \left [ e^{i\alpha }\right ] +\frac {1}{i^{2}\alpha ^{2}}\left [ \ e^{-i\alpha x}\ \right ] _{-1}^{0}\\ & =\frac {1}{i\alpha }\ \ \left [ e^{i\alpha }\right ] -\frac {1}{\alpha ^{2}}\left [ \ 1-\ e^{i\alpha }\right ] \\ & =\frac {e^{i\alpha }}{i\alpha }\ -\frac {1}{\alpha ^{2}}+\ \frac {e^{i\alpha }}{\alpha ^{2}} \end {align*}

And the second integral

\begin {align*} {\displaystyle \int \limits _{0}^{1}} x\ \ e^{-i\alpha x}\ dx & =\ \left [ x\ \frac {e^{-i\alpha x}}{-i\alpha }\right ] _{0}^{1}-{\displaystyle \int \limits _{0}^{1}} \ \ \frac {e^{-i\alpha x}}{-i\alpha }\ dx\\ & =\frac {1}{-i\alpha }\ \ \left [ 1\times e^{-i\alpha }-0\right ] +\frac {1}{i\alpha }{\displaystyle \int \limits _{0}^{1}} \ e^{-i\alpha x}\ dx\ \\ & =\frac {1}{-i\alpha }\ \ \left [ e^{-i\alpha }\right ] +\frac {1}{i\alpha }\left [ \ \frac {e^{-i\alpha x}\ }{-i\alpha }\right ] _{0}^{1}\\ & =\frac {1}{-i\alpha }\ \ \left [ e^{-i\alpha }\right ] -\frac {1}{i^{2}\alpha ^{2}}\left [ \ e^{-i\alpha x}\ \right ] _{0}^{1}\\ & =\frac {1}{-i\alpha }\ \ \left [ e^{-i\alpha }\right ] +\frac {1}{\alpha ^{2}}\left [ \ e^{-i\alpha }-1\ \right ] \\ & =\frac {e^{-i\alpha }}{-i\alpha }\ \ +\frac {\ e^{-i\alpha }}{\alpha ^{2}}-\frac {1}{\alpha ^{2}}\ \end {align*}

Hence

\begin {align*} 2\pi \ \ \digamma \left (\alpha \right ) & =\left (\frac {e^{i\alpha }}{i\alpha }\ -\frac {1}{\alpha ^{2}}+\ \frac {e^{i\alpha }}{\alpha ^{2}}\right ) +\left (\frac {e^{-i\alpha }}{-i\alpha }\ \ +\frac {\ e^{-i\alpha }}{\alpha ^{2}}-\frac {1}{\alpha ^{2}}\right ) \ \\ 2\pi \ \ \digamma \left (\alpha \right ) & =\frac {e^{i\alpha }}{i\alpha }\ -\frac {1}{\alpha ^{2}}+\frac {\ e^{i\alpha }}{\alpha ^{2}}-\frac {e^{-i\alpha }}{i\alpha }\ \ +\frac {\ e^{-i\alpha }}{\alpha ^{2}}-\frac {1}{\alpha ^{2}}\\ & =\frac {e^{i\alpha }}{i\alpha }\ +\ \frac {e^{i\alpha }}{\alpha ^{2}}-\frac {e^{-i\alpha }}{i\alpha }\ \ +\frac {\ e^{-i\alpha }}{\alpha ^{2}}\ \ -\frac {2}{\alpha ^{2}}\\ & =\frac {1}{\alpha }\left (\frac {e^{i\alpha }}{i}-\frac {e^{-i\alpha }}{i}\right ) +\frac {1}{\alpha ^{2}}\left (e^{i\alpha }+e^{-i\alpha }\ \right ) -\frac {2}{\alpha ^{2}}\\ & =\frac {1}{\alpha }\left (\frac {e^{i\alpha }-e^{-i\alpha }}{i}\right ) +\frac {1}{\alpha ^{2}}\left (e^{i\alpha }+e^{-i\alpha }\ \right ) -\frac {2}{\alpha ^{2}} \end {align*}

But \(e^{i\alpha }+e^{-i\alpha }=2\cos \alpha \) and \(\frac {e^{i\alpha }-e^{-i\alpha }}{i}=2\sin \alpha \), Hence the above becomes

\begin {align*} 2\pi \ \ \digamma \left (\alpha \right ) & =\frac {1}{\alpha }\left ( 2\sin \alpha \right ) +\frac {1}{\alpha ^{2}}\left (2\cos \alpha \ \right ) -\frac {2}{\alpha ^{2}}\\ & =\frac {2}{\alpha ^{2}}\left [ \alpha \sin \alpha +\cos \alpha \ -1\right ] \\ \ \digamma \left (\alpha \right ) & =\frac {1}{\pi \alpha ^{2}}\left [ \alpha \sin \alpha +\cos \alpha \ -1\right ] \end {align*}

Hence the Fourier transform of \(f\relax (x) \) is

\[ \digamma \left (\alpha \right ) =\frac {1}{\pi \alpha ^{2}}\left [ \alpha \sin \alpha +\cos \alpha \ -1\right ] \]

To obtain \(f\relax (x) \) given its fourier transform \(\digamma \left ( \alpha \right ) ,\) then we apply the inverse fourier transform

\begin {align*} f\relax (x) & =\ {\displaystyle \int \limits _{-\infty }^{\infty }} \digamma \left (\alpha \right ) \ e^{i\alpha x}\ d\alpha \\ & =\ {\displaystyle \int \limits _{-\infty }^{\infty }} \ \frac {1}{\pi \alpha ^{2}}\left [ \alpha \sin \alpha +\cos \alpha \ -1\right ] \ \ e^{i\alpha x}\ d\alpha \\ & =\frac {1}{\pi }{\displaystyle \int \limits _{-\infty }^{\infty }} \ \frac {1}{\alpha ^{2}}\left [ \alpha \sin \alpha +\cos \alpha \ -1\right ] \ \ e^{i\alpha x}\ d\alpha \end {align*}

3.13.10 chapter 15, problem 5.1

Problem Show that \(\ g\relax (t) \circledast h\left ( t\right ) =\ h\relax (t) \circledast g\relax (t) \ \)

Solution

By definition,

\begin {equation} g\relax (t) \circledast h\relax (t) =\int _{0}^{t}g\left ( t-\tau \right ) \ h\left (\tau \right ) \ d\tau \tag {1} \end {equation}

Let \(u=t-\tau \), \(du=-d\tau \), when \(\tau =0\), \(u=t\), when \(\tau =t\), \(u=0\), Hence The RHS becomes

\begin {align*} \int _{0}^{t}g\left (t-\tau \right ) \ h\left (\tau \right ) \ d\tau & =\int _{u=t}^{u=0}g\relax (u) \ h\left (t-u\right ) \ (-du)\\ & =-\int _{u=t}^{u=0}g\relax (u) \ h\left (t-u\right ) \ du\\ & =\int _{u=0}^{u=t}g\relax (u) \ h\left (t-u\right ) \ du \end {align*}

Since \(u\) is a dummy variable of integration, call it anything we want, say \(\tau \) so above integral becomes

\begin {align} \int _{0}^{t}g\left (t-\tau \right ) \ h\left (\tau \right ) \ d\tau & =\int _{0}^{t}g\left (\tau \right ) \ h\left (t-\tau \right ) \ d\tau \nonumber \\ \int _{0}^{t}g\left (t-\tau \right ) \ h\left (\tau \right ) \ d\tau & =\int _{0}^{t}h\left (t-\tau \right ) \ g\left (\tau \right ) \ \ d\tau \tag {2} \end {align}

Hence from (2) \(g\relax (t) \circledast h\relax (t) =\ h\left ( t\right ) \circledast g\relax (t) \ \)

3.13.11 chapter 15, problem 5.10

Problem

Use convolution integral to find the inverse transform of \(\frac {1}{p\left ( p^{2}+a^{2}\right ) ^{2}}\)

Solution

\[ \frac {1}{p\left (p^{2}+a^{2}\right ) ^{2}}=\frac {1}{p}\frac {1}{\left ( p^{2}+a^{2}\right ) ^{2}}=GH \]

From Tables using L1 and L17 \(g\relax (t) =1\,\) and \(h\left ( t\right ) =\frac {\sin at-at\ \cos at}{2a^{3}}\). Hence the inverse transform of \(GH=\) \(\ g\relax (t) \circledast h\relax (t) \). Using L34

\begin {equation} \ g\relax (t) \circledast h\relax (t) =\int _{0}^{t}g\left ( t-\tau \right ) \ h\left (\tau \right ) \ d\tau \tag {L34} \end {equation}

Hence

\begin {align} \ g\relax (t) \circledast h\relax (t) & =\int _{0}^{t}1\times \frac {\sin a\left (t-\tau \right ) -a\left (t-\tau \right ) \ \cos a\left (t-\tau \right ) }{2a^{3}}\ \ \ d\tau \nonumber \\ & =\frac {1}{2a^{3}}\int _{0}^{t}\sin a\left (t-\tau \right ) -a\left ( t-\tau \right ) \ \cos a\left (t-\tau \right ) \ d\tau \nonumber \\ & =\frac {1}{2a^{3}}\left [ \int _{0}^{t}\sin a\left (t-\tau \right ) \ d\tau -at\int _{0}^{t}\ \cos a\left (t-\tau \right ) d\tau +a\int _{0}^{t}\tau \cos a\left (t-\tau \right ) \ d\tau \right ] \tag {1} \end {align}

The last integral can be integrated by parts. \(u=\tau \), \(v=\frac {\sin a\left ( t-\tau \right ) }{-a}\)

\begin {align*} \int _{0}^{t}\tau \cos a\left (t-\tau \right ) \ d\tau & =\ \left [ \tau \frac {\sin a\left (t-\tau \right ) }{-a}\right ] _{0}^{t}-\int _{0}^{t}\frac {\sin a\left (t-\tau \right ) }{-a}\ d\tau \\ & =\frac {-1}{a}\left [ \tau \sin a\left (t-\tau \right ) \right ] _{0}^{t}+\frac {1}{a}\int _{0}^{t}\sin a\left (t-\tau \right ) \ d\tau \\ \ & =\frac {-1}{a}\left [ \tau \sin a\left (t-\tau \right ) \right ] _{0}^{t}+\frac {1}{a}\left [ \ \frac {-\cos a\left (t-\tau \right ) }{-a}\right ] _{0}^{t}\\ \ \ & =\frac {-1}{a}\left [ \tau \sin a\left (t-\tau \right ) \right ] _{0}^{t}+\frac {1}{a^{2}}\left [ \ \cos a\left (t-\tau \right ) \right ] _{0}^{t}\\ & =\frac {-1}{a}\left [ t\sin a\left (t-t\right ) -0\right ] +\frac {1}{a^{2}}\left [ \ \cos a\left (t-t\right ) -\cos a\left (t-0\right ) \right ] \\ \ & =\frac {-1}{a}\left [ 0\right ] +\frac {1}{a^{2}}\left [ \ \cos a\left ( 0\right ) -\cos a\relax (t) \right ] \\ \ & =\ \ \frac {1}{a^{2}}\left [ \ 1-\cos at\right ] \end {align*}

Hence (1) becomes

\begin {align*} g\relax (t) \circledast h\relax (t) & =\frac {1}{2a^{3}}\left [ \int _{0}^{t}\sin a\left (t-\tau \right ) \ d\tau -at\int _{0}^{t}\ \cos a\left ( t-\tau \right ) d\tau +a\frac {1}{a^{2}}\left [ \ 1-\cos at\right ] \right ] \\ g\relax (t) \circledast h\relax (t) & =\frac {1}{2a^{3}}\left [ \left [ \frac {-\cos a\left (t-\tau \right ) }{-a\tau }\right ] _{0}^{t}-at\ \left [ \frac {\ \sin a\left (t-\tau \right ) }{-a\tau }\right ] +\ \frac {1}{a}\left [ \ 1-\cos at\right ] \right ] \\ & =\frac {1}{2a^{3}}\left [ \frac {1}{a}\left [ \cos a\left (t-\tau \right ) \right ] _{0}^{t}+t\ \left [ \ \sin a\left (t-\tau \right ) \right ] _{0}^{t}+\ \frac {1}{a}\left [ \ 1-\cos at\right ] \right ] \\ & =\frac {1}{2a^{3}}\left [ \frac {1}{a}\left [ \cos a\left (t-t\right ) -\cos a\left (t-0\right ) \right ] +t\ \left [ \ \sin a\left (t-t\right ) -\sin a\left (t-0\right ) \right ] _{0}^{t}+\ \frac {1}{a}\left [ \ 1-\cos at\right ] \right ] \\ & =\frac {1}{2a^{3}}\left [ \frac {1}{a}\left [ 1-\cos at\right ] +t\ \left [ \ -\sin at\right ] +\ \frac {1}{a}\left [ \ 1-\cos at\right ] \right ] \\ & =\frac {1}{2a^{3}}\left [ \frac {1}{a}\left [ 1-\cos at\right ] -t\ \ \sin at+\ \frac {1}{a}\left [ \ 1-\cos at\right ] \right ] \\ & =\frac {1}{2a^{4}}\left (2-2\cos at-at\ \ \sin at\right ) \end {align*}

So the inverse Laplace transform of \(\frac {1}{p\left (p^{2}+a^{2}\right ) ^{2}}\) is \[ \frac {1}{2a^{4}}\left (2-2\cos at-at\ \ \sin at\right ) \]

3.13.12 chapter 15, problem 5.2

Problem Use L34 and L2 to find the inverse transform of \(G\left ( p\right ) H\relax (p) \) when \(G\relax (p) =\frac {1}{\left ( p+a\right ) }\) and \(H\relax (p) =\frac {1}{\left (p+b\right ) }\) your result should be L7

Solution

\begin {equation} \mathcal {L}\left (e^{-at}\right ) =\frac {1}{p+a} \tag {L2} \end {equation}

\begin {equation} g\relax (t) \circledast h\relax (t) =\int _{0}^{t}g\left ( t-\tau \right ) \ h\left (\tau \right ) \ d\tau \tag {L34} \end {equation}

Using L2, \(g(t)=\mathcal {L}^{-1}\frac {1}{\left (p+a\right ) }=e^{-at}\), and \(h\relax (t) =\mathcal {L}^{-1}\frac {1}{\left (p+b\right ) }=e^{-bt}\). Now Let \(Y(p)=G\relax (p) H\relax (p) \), But

\[ G\relax (p) H\relax (p) =\mathcal {L}\left \{ \ g\relax (t) \circledast h\relax (t) \ \right \} \]

Then

\begin {align*} y\relax (t) & =g\relax (t) \circledast h\relax (t) =\int _{0}^{t}g\left (t-\tau \right ) \ h\left (\tau \right ) \ d\tau \\ & =\int _{0}^{t}e^{-a\left (t-\tau \right ) }\ \ e^{-b\tau }\ d\tau \\ & =\int _{0}^{t}e^{-at+a\tau }\ \ e^{-b\tau }\ d\tau \\ & =\int _{0}^{t}e^{-at\ }e^{a\tau }\ \ e^{-b\tau }\ d\tau \end {align*}

\(e^{-at}\) can be moved outside the integral

\begin {align*} y\relax (t) & =e^{-at\ }\int _{0}^{t}e^{a\tau }\ \ e^{-b\tau }\ d\tau \\ y\relax (t) & =e^{-at\ }\int _{0}^{t}e^{a\tau -b\tau }\ \ \ \ d\tau \\ y\relax (t) & =e^{-at\ }\int _{0}^{t}e^{\tau \left (a-b\right ) }\ \ \ \ d\tau \\ y\relax (t) & =e^{-at\ }\ \left [ \frac {e^{\tau \left (a-b\right ) }}{a-b}\right ] _{0}^{t}\\ y\relax (t) & =\frac {e^{-at\ }}{a-b}\ \left [ e^{t\left (a-b\right ) }-1\right ] \\ y\relax (t) & =\frac {e^{-at+t\left (a-b\right ) \ }-e^{-at\ }}{a-b}\ \ \\ y\relax (t) & =\frac {e^{-bt\ }-e^{-at\ }}{a-b}\\ y\relax (t) & =\frac {e^{-at\ }-e^{-bt\ }}{b-a} \end {align*}

Which is L7 as required to show.

3.13.13 chapter 15, problem 5.22

Problem

Verify Parseval’s theorem for \(f\relax (x) =e^{-\left \vert x\right \vert }\) and \(g\left (\alpha \right ) =\)Fourier transform of \(f\relax (x) \)

Solution

Parseval theorem says that total energy in a signal equal to the sum of the energies in the harmonics that make up the signal. i.e.

\[ \int _{-\infty }^{\infty }\left \vert g\left (\alpha \right ) \right \vert ^{2}\ d\alpha =\frac {1}{2\pi }\int _{-\infty }^{\infty }\left \vert f\left ( x\right ) \right \vert ^{2}\ dx \]

\begin {align} \frac {1}{2\pi }\int _{-\infty }^{\infty }\left \vert f\relax (x) \right \vert ^{2}\ dx & =\frac {1}{2\pi }\int _{-\infty }^{\infty }\left \vert e^{-\left \vert x\right \vert }\right \vert ^{2}\ dx\nonumber \\ & =\frac {1}{2\pi }\int _{-\infty }^{\infty }e^{-2\left \vert x\right \vert }\ dx\nonumber \\ & =\frac {1}{2\pi }\left \{ \int _{-\infty }^{0}e^{2x}\ dx+\int _{0}^{\infty }e^{-2x}\ dx\right \} \nonumber \\ & =\frac {1}{2\pi }\left \{ \left [ \ \frac {e^{2x}}{2}\right ] _{-\infty }^{0}+\ \left [ \frac {e^{-2x}}{-2}\right ] _{0}^{\infty }\right \} \nonumber \\ & =\frac {1}{4\pi }\left \{ \left [ \ e^{2x}\right ] _{-\infty }^{0}-\ \left [ e^{-2x}\right ] _{0}^{\infty }\right \} \nonumber \\ & =\frac {1}{4\pi }\left \{ \left [ \ e^{0}-0\right ] -\ \left [ 0-e^{0}\right ] \right \} \nonumber \\ & =\frac {1}{4\pi }\left \{ 1+1\right \} \nonumber \\ & =\frac {1}{2\pi }\ \tag {1} \end {align}

Now we find the Fourier transform for \(f\relax (x) \)

\begin {align*} g\left (\alpha \right ) & =\frac {1}{2\pi }\int _{-\infty }^{\infty }e^{-\left \vert x\right \vert }e^{-ix\alpha }dx\\ & =\frac {1}{2\pi }\left [ \int _{-\infty }^{0}e^{x}e^{-ix\alpha }dx+\int _{0}^{\infty }e^{-x}e^{-ix\alpha }dx\right ] \\ & =\frac {1}{2\pi }\left [ \int _{-\infty }^{0}e^{x\left (1-i\alpha \right ) }\ dx+\int _{0}^{\infty }e^{\ x\left (-1-i\alpha \right ) }\ dx\right ] \\ & =\frac {1}{2\pi }\ \left (\left [ \frac {e^{x\left (1-i\alpha \right ) }}{1-i\alpha }\right ] _{-\infty }^{0}+\left [ \frac {e^{x\left (-1-i\alpha \right ) }}{-1-i\alpha }\right ] _{0}^{\infty }\right ) \\ & =\frac {1}{2\pi }\ \left (\frac {1}{1-i\alpha }\left [ e^{x\left ( 1-i\alpha \right ) }\right ] _{-\infty }^{0}-\frac {1}{1+i\alpha }\left [ e^{x\left (-1-i\alpha \right ) }\right ] _{0}^{\infty }\right ) \\ & =\frac {1}{2\pi }\ \left (\frac {1}{1-i\alpha }\left [ e^{x\left ( 1-i\alpha \right ) }\right ] _{-\infty }^{0}-\frac {1}{1+i\alpha }\left [ e^{x\left (-1-i\alpha \right ) }\right ] _{0}^{\infty }\right ) \\ & =\frac {1}{2\pi }\ \left (\frac {1}{1-i\alpha }\left [ 1-e^{-\infty \left ( 1-i\alpha \right ) }\right ] -\frac {1}{1+i\alpha }\left [ e^{\infty \left ( -1-i\alpha \right ) }-1\right ] \right ) \\ & =\frac {1}{2\pi }\ \left (\frac {1}{1-i\alpha }\left [ 1\right ] -\frac {1}{1+i\alpha }\left [ -1\right ] \right ) \\ & =\frac {1}{2\pi }\ \left (\frac {1}{1-i\alpha }\ +\frac {1}{1+i\alpha }\ \right ) \\ & =\frac {1}{2\pi }\ \left (\ \frac {1+i\alpha +1-i\alpha }{\left ( 1-i\alpha \right ) \left (1+i\alpha \right ) }\ \right ) \\ & =\frac {1}{2\pi }\ \left (\frac {2\ }{1+\alpha ^{2}}\right ) \\ & =\frac {1\ }{\pi \left (1+\alpha ^{2}\right ) }\ \end {align*}

So

\begin {align*} \int _{-\infty }^{\infty }\left \vert g\left (\alpha \right ) \right \vert ^{2}\ d\alpha & =\int _{-\infty }^{\infty }\left \vert \frac {1\ }{\pi \left ( 1+\alpha ^{2}\right ) }\right \vert ^{2}\ d\alpha \\ & =\frac {1}{\pi ^{2}}\int _{-\infty }^{\infty }\frac {1\ }{\left (1+\alpha ^{2}\right ) ^{2}}d\alpha \end {align*}

But \(\int _{-\infty }^{\infty }\frac {1\ }{\left (1+\alpha ^{2}\right ) ^{2}}d\alpha =\frac {\pi }{2}\), Hence

\begin {align} \int _{-\infty }^{\infty }\left \vert g\left (\alpha \right ) \right \vert ^{2}\ d\alpha & =\frac {1}{\pi ^{2}}\ \left (\frac {\pi }{2}\right ) \ \nonumber \\ & =\frac {1}{2\pi }\ \tag {2} \end {align}

Comparing (1) and (2). They are the same. Hence\(\ \)\[ \int _{-\infty }^{\infty }\left \vert g\left (\alpha \right ) \right \vert ^{2}\ d\alpha =\frac {1}{2\pi }\int _{-\infty }^{\infty }\left \vert f\left ( x\right ) \right \vert ^{2}\ dx \] was verified for this problem as required.

3.13.14 chapter 15, problem 5.4

Problem

Use convolution integral to find the inverse transform of \(\frac {1}{\left ( p+a\right ) \left (p+b\right ) ^{2}}\)

Solution

\[ \frac {1}{\left (p+a\right ) \left (p+b\right ) ^{2}}=\frac {1}{\left ( p+a\right ) }\frac {1}{\left (p+b\right ) ^{2}}\]

From but from L6

\begin {equation} \mathcal {L}\left (t^{k}e^{-at}\right ) =\frac {k!}{\left (p+a\right ) ^{k+1}} \tag {L2} \end {equation}

Hence \(\frac {1}{\left (p+a\right ) }=\mathcal {L}\left (e^{-at}\right ) \) and \(\frac {1}{\left (p+b\right ) ^{2}}=\mathcal {L}\left (e^{-bt}\right ) \). Hence the inverse transform of \(\frac {1}{\left ( p+a\right ) }\frac {1}{\left (p+b\right ) ^{2}}=e^{-at}\circledast te^{-bt}\). Using L34

\begin {equation} \ g\relax (t) \circledast h\relax (t) =\int _{0}^{t}g\left ( t-\tau \right ) \ h\left (\tau \right ) \ d\tau \tag {L34} \end {equation}

Hence

\begin {align*} e^{-at}\circledast te^{-bt} & =\int _{0}^{t}e^{-a\left (t-\tau \right ) }\ \tau e^{-b\tau }\ d\tau \\ & =\int _{0}^{t}e^{-at+a\tau }\ \tau e^{-b\tau }\ d\tau \\ & =\int _{0}^{t}e^{-at}e^{a\tau }\ \tau e^{-b\tau }\ d\tau \\ & =e^{-at}\int _{0}^{t}e^{a\tau }\ \tau e^{-b\tau }\ d\tau \\ & =e^{-at}\int _{0}^{t}\tau e^{\tau \left (a-b\right ) }\ \ d\tau \end {align*}

Integrate by parts. \(u=\tau \), \(v=\frac {e^{\tau \left (a-b\right ) }}{a-b}\)

\begin {align*} e^{-at}\circledast te^{-bt} & =e^{-at}\left \{ \ \left [ \tau \frac {e^{\tau \left (a-b\right ) }}{a-b}\right ] _{0}^{t}-\int _{0}^{t}\frac {e^{\tau \left (a-b\right ) }}{a-b}\ \ d\tau \right \} \\ & =e^{-at}\left \{ \ \left [ \tau \frac {e^{\tau \left (a-b\right ) }}{a-b}\right ] _{0}^{t}-\frac {1}{a-b}\left [ \frac {e^{\tau \left (a-b\right ) }}{a-b}\right ] _{0}^{t}\ \ \right \} \\ & =e^{-at}\ \left (\frac {1}{a-b}\left [ \tau e^{\tau \left (a-b\right ) }\right ] _{0}^{t}-\frac {1}{\left (a-b\right ) ^{2}}\ \left [ e^{\tau \left ( a-b\right ) }\right ] _{0}^{t}\ \right ) \ \\ & =e^{-at}\ \left (\frac {1}{a-b}\left [ te^{t\left (a-b\right ) }\right ] -\frac {1}{\left (a-b\right ) ^{2}}\ \left [ e^{t\left (a-b\right ) }-1\right ] \ \right ) \\ & =e^{-at}\ \left (\frac {te^{ta-tb}}{a-b}-\frac {e^{ta-tb}-1}{\left ( a-b\right ) ^{2}}\right ) \\ & =\ \frac {te^{-tb}}{a-b}-\frac {e^{-tb}-e^{-at}}{\left (a-b\right ) ^{2}}\\ & =\ \frac {\left (a-b\right ) te^{-tb}-e^{-tb}+e^{-at}}{\left (a-b\right ) ^{2}}\ \\ & =\ \frac {\left (\left (a-b\right ) t-1\right ) e^{-tb}+e^{-at}}{\left ( a-b\right ) ^{2}}\ \end {align*}

So the inverse laplace transform of \(\frac {1}{\left (p+a\right ) \left ( p+b\right ) ^{2}}\) is \[ \frac {\left (\left (a-b\right ) t-1\right ) \ e^{-tb}+e^{-at}}{\left ( a-b\right ) ^{2}}\]

3.13.15 chapter 15, problem 6.2

Problem

Find the inverse laplace transform using 6.6 of the function \(\frac {1}{p^{4}-1}\)

Solution

6.6 states that \(f\relax (t) \) = sum of all residues of \(F\left ( z\right ) e^{zt}\) at all poles. Poles of \(F\relax (z) =\frac {1}{z^{4}-1}\)are at \(\pm 1,\pm i\). Hence

\[ F\relax (z) =\frac {e^{zt}}{\left (z-1\right ) \left (z+1\right ) \left (z-i\right ) \left (z+i\right ) \ }\]

Since each pole is of order 1, we use equation 6.1 page 599 which says

\[ \text {Residue of }F\relax (z) \ \text {at\ }z=z_{0}\ \ \text {is\ \ }\lim _{z\rightarrow z_{0}}\ \ \left (z-z_{0}\right ) F\relax (z) \]

Hence sum of residue is

\begin {align*} R & =\lim _{z\rightarrow +1}\frac {e^{zt}}{\ \left (z+1\right ) \left ( z-i\right ) \left (z+i\right ) \ }+\lim _{z\rightarrow -1}\frac {e^{zt}}{\left ( z-1\right ) \left (z-i\right ) \left (z+i\right ) \ }\\ & +\lim _{z\rightarrow +i}\frac {e^{zt}}{\left (z-1\right ) \left (z+1\right ) \left (z+i\right ) \ }+\lim _{z\rightarrow -i}\frac {e^{zt}}{\left (z-1\right ) \left (z+1\right ) \left (z-i\right ) \ }\\ & \\ & =\ \frac {e^{t}}{\ \left (1+1\right ) \left (1-i\right ) \left ( 1+i\right ) \ }+\ \frac {e^{-t}}{\left (-1-1\right ) \left (-1-i\right ) \left (-1+i\right ) \ }\\ & +\ \frac {e^{it}}{\left (i-1\right ) \left (i+1\right ) \left ( i+i\right ) \ }+\ \frac {e^{-it}}{\left (-i-1\right ) \left (-i+1\right ) \left (-i-i\right ) \ }\\ & \\ & =\frac {e^{t}}{\ 4\ \ }+\ \frac {e^{-t}}{-4}+\frac {e^{it}}{-4i\ }+\ \frac {e^{-it}}{4i\ }\\ & =\ \left (\frac {e^{t}-e^{-t}}{4}\right ) -\frac {1}{2}\left (\frac {e^{it}-e^{-it}\ }{2i}\right ) \\ & =\left (\frac {e^{t}-e^{-t}}{4}\right ) -\frac {1}{2}\left (\sin t\right ) \end {align*}

3.13.16 chapter 15, problem 6.4

Problem

Find the inverse laplace transform using 6.6 of the function \(\frac {p^{3}}{p^{4}-16}\)

Solution

6.6 states that \(f\relax (t) \) = sum of all residues of \(F\left ( z\right ) e^{zt}\) at all poles. Poles of \(F\relax (z) =\frac {z^{3}}{z^{4}-16}\)are at \(\pm 2,\pm 2i\), Hence

\[ F\relax (z) =\frac {z^{3}e^{zt}}{\left (z-2\right ) \left (z+2\right ) \left (z-2i\right ) \left (z+2i\right ) \ }\]

Since each pole is of order 1, we use equation 6.1 page 599 which says

\[ \text {Residue of }F\relax (z) \ \text {at\ }z=z_{0}\ \ \text {is\ \ }\lim _{z\rightarrow z_{0}}\ \ \left (z-z_{0}\right ) F\relax (z) \]

Hence sum of residue is

\begin {align*} R & =\lim _{z\rightarrow +2}\frac {z^{3}e^{zt}}{\ \left (z+2\right ) \left ( z-2i\right ) \left (z+2i\right ) \ }+\lim _{z\rightarrow -2}\frac {z^{3}e^{zt}}{\left (z-2\right ) \left (z-2i\right ) \left (z+2i\right ) \ }\\ & +\lim _{z\rightarrow +2i}\frac {z^{3}e^{zt}}{\left (z-2\right ) \left ( z+2\right ) \left (z+2i\right ) \ }+\lim _{z\rightarrow -2i}\frac {z^{3}e^{zt}}{\left (z-2\right ) \left (z+2\right ) \left (z-2i\right ) \ }\\ & \\ & \\ & =\ \frac {8e^{2t}}{\ \left (2+2\right ) \left (2-2i\right ) \left ( 2+2i\right ) \ }+\frac {-8e^{-2t}}{\left (-2-2\right ) \left (-2-2i\right ) \left (-2+2i\right ) \ }\\ & +\ \frac {\left (2i\right ) ^{3}e^{2it}}{\left (2i-2\right ) \left ( 2i+2\right ) \left (2i+2i\right ) \ }+\frac {\left (-2i\right ) ^{3}e^{-2it}}{\left (-2i-2\right ) \left (-2i+2\right ) \left (-2i-2i\right ) \ }\\ & \\ & \\ & =\frac {8e^{2t}}{\ \relax (4) \ 8\ }+\frac {-8e^{-2t}}{\left ( -4\right ) 8\ }+\frac {\left (-8i\right ) e^{2it}}{\ -8\left (4i\right ) \ }+\frac {\left (8i\right ) e^{-2it}}{\ -8\left (-4i\right ) \ }\\ & =\frac {e^{2t}}{\ 4\ \ }+\frac {e^{-2t}}{4}+\frac {e^{2it}}{\ 4\ }+\frac {e^{-2it}}{\ 4\ }\\ & =\ \frac {e^{2t}+e^{-2t}}{4}+\frac {1}{2}\left (\cos 2t\right ) \end {align*}

So inverse Laplace transform of \(\frac {p^{3}}{p^{4}-16}\) is \[ \frac {e^{2t}+e^{-2t}}{4}+\frac {1}{2}\left (\cos 2t\right ) \]

3.13.17 chapter 15, problem 6.5

Problem

Find the inverse laplace transform using 6.6 of the function \(\frac {3p^{2}}{p^{3}+8}\)

Solution

6.6 states that \(f\relax (t) \) = sum of all residues of \(F\left ( z\right ) e^{zt}\) at all poles. To find poles, look at \(p^{3}+8=0,\) hence \(p^{3}=-8\), \(p=-8^{\frac {1}{3}}\). Let

\[ 8^{\frac {1}{3}}=re^{i\theta }\]

Then the roots are

\begin {align*} & =8^{^{\frac {1}{3}}}e^{\frac {i0}{3}},8^{^{\frac {1}{3}}}e^{\frac {i\left ( 0+2\pi \right ) }{3}},8^{^{\frac {1}{3}}}e^{\frac {i\left (0+4\pi \right ) }{3}}\\ & =8^{^{\frac {1}{3}}}\ ,8^{^{\frac {1}{3}}}(\cos \frac {2\pi }{3}+i\sin \frac {2\pi }{3}),8^{^{\frac {1}{3}}}(\cos \frac {4\pi }{3}+i\sin \frac {4\pi }{3})\\ & =2\ ,2(\cos 120^{0}+i\sin 120^{0}),2(\cos 240^{0}+i\sin 240^{0})\\ & =2\ ,2(-\frac {1}{2}+i\frac {\sqrt {3}}{2}),2(-\frac {1}{2}+i\frac {-\sqrt {3}}{2})\\ & =2,-1+i\sqrt {3},-1-i\sqrt {3} \end {align*}

Hence

\[ p=-2,1-i\sqrt {3},1+i\sqrt {3}\]

And

\begin {align*} F\relax (z) & =\frac {3z^{2}}{z^{3}+8}e^{zt}\\ & =\frac {3z^{2}}{\left (z+2\right ) \left (z-\left (1-i\sqrt {3}\right ) \right ) \left (z-\left (1+i\sqrt {3}\right ) \right ) }e^{zt} \end {align*}

Since each pole is of order 1, we use equation 6.1 page 599 which says

\[ \text {Residue of }F\relax (z) \ \text {at\ }z=z_{0}\ \ \text {is\ \ }\lim _{z\rightarrow z_{0}}\ \ \left (z-z_{0}\right ) F\relax (z) \]

Hence sum of residue is

\begin {align*} R & =\lim _{z\rightarrow -2}\frac {3z^{2}}{\ \left (z-\left (1-i\sqrt {3}\right ) \right ) \left (z-\left (1+i\sqrt {3}\right ) \right ) }e^{zt}+\lim _{z\rightarrow \left (1-i\sqrt {3}\right ) }\ \frac {3z^{2}}{\left ( z+2\right ) \left (z-\left (1+i\sqrt {3}\right ) \right ) }e^{zt}\\ & +\lim _{z\rightarrow \left (1+i\sqrt {3}\right ) }\frac {3z^{2}}{\left ( z+2\right ) \left (z-\left (1-i\sqrt {3}\right ) \right ) }e^{zt}\\ & =\ \frac {3\left (-2\right ) ^{2}}{\ \left (-2-\left (1-i\sqrt {3}\right ) \right ) \left (-2-\left (1+i\sqrt {3}\right ) \right ) }e^{-2t}+\ \frac {3\left (1-i\sqrt {3}\right ) ^{2}}{\left (\left (1-i\sqrt {3}\right ) +2\right ) \left (\left (1-i\sqrt {3}\right ) -\left ( 1+i\sqrt {3}\right ) \right ) }e^{\left (1-i\sqrt {3}\right ) t}\ \\ & +\ \frac {3\left (1+i\sqrt {3}\right ) ^{2}}{\left (\left (1+i\sqrt {3}\right ) +2\right ) \left (\left (1+i\sqrt {3}\right ) -\left ( 1-i\sqrt {3}\right ) \right ) }e^{\left (1+i\sqrt {3}\right ) t}\\ & =\frac {12}{\ \left (-3+i\sqrt {3}\right ) \left (-3-i\sqrt {3}\right ) }e^{-2t}+\ \frac {3\left (-2-2i\sqrt {3}\right ) }{\left (3-i\sqrt {3}\right ) \left (-2i\sqrt {3}\right ) }e^{\left (1-i\sqrt {3}\right ) t}+\ \frac {3\left (-2+2i\sqrt {3}\right ) }{\left (3+i\sqrt {3}\right ) \left ( 2i\sqrt {3}\right ) }e^{\left (1+i\sqrt {3}\right ) t}\\ & =\ \frac {12}{\ 12}e^{-2t}+\ \frac {\ -6-6i\sqrt {3}}{-6i\sqrt {3}-6}e^{\left ( 1-i\sqrt {3}\right ) t}+\ \frac {-6+6i\sqrt {3}}{6i\sqrt {3}-6}e^{\left ( 1+i\sqrt {3}\right ) t}\\ & =\ e^{-2t}+\ e^{\left (1-i\sqrt {3}\right ) t}+e^{\left (1+i\sqrt {3}\right ) t}\\ & =\ e^{-2t}+\ e^{t}e^{-i\sqrt {3}t}+e^{t}e^{i\sqrt {3}t}\\ & =\ e^{-2t}+\ e^{t}\left (e^{i\sqrt {3}t}+e^{-i\sqrt {3}t}\right ) \\ & =\ e^{-2t}+\ e^{t}\left (2\cos \sqrt {3}t\right ) \end {align*}

So inverse Laplace transform of \(\frac {3p^{2}}{p^{3}+8}\) is \[ e^{-2t}+\ e^{t}\left (2\cos \sqrt {3}t\right ) \]

3.13.18 chapter 15, problem 6.9

Problem

Find the inverse laplace transform using 6.6 of the function \(\frac {p}{p^{4}-1}\)

Solution

6.6 states that \(f\relax (t) \) = sum of all residues of \(F\left ( z\right ) e^{zt}\) at all poles. To find poles, look at \(p^{4}-1=0,\) hence \(p^{4}=1\), \(p=1^{\frac {1}{4}}\). Let

\[ 1^{\frac {1}{4}}=re^{i\theta }\]

Then roots are

\begin {align*} & =1^{^{\frac {1}{4}}}e^{\frac {i0}{4}},1^{^{\frac {1}{4}}}e^{\frac {i\left ( 0+2\pi \right ) }{4}},1^{^{\frac {1}{4}}}e^{\frac {i\left (0+4\pi \right ) }{4}},^{^{\frac {1}{4}}}e^{\frac {i\left (0+6\pi \right ) }{4}}\\ & =1\ ,1\left (\cos \frac {2\pi }{4}+i\sin \frac {2\pi }{4}\right ) ,1\left ( \cos \frac {4\pi }{4}+i\sin \frac {4\pi }{4}\right ) ,1\left (\cos \frac {6\pi }{4}+i\sin \frac {6\pi }{4}\right ) \\ & =1\ ,\left (0+i\right ) ,\left (-1+i\ 0\right ) ,\left (0-i\ 1\right ) \\ & =\ 1,i,-1,-i \end {align*}

Therefore

\[ p=\ 1,i,-1,-i \]

Hence

\begin {align*} F\relax (z) & =\frac {z}{z^{4}-1}e^{zt}\\ & =\frac {z}{\left (z-1\right ) \left (z-i\right ) \left (z+1\right ) \left (z+i\right ) }e^{zt} \end {align*}

Since each pole is of order 1, we use equation 6.1 page 599 which says

\[ \text {Residue of }F\relax (z) \ \text {at\ }z=z_{0}\ \ \text {is\ \ }\lim _{z\rightarrow z_{0}}\ \ \left (z-z_{0}\right ) F\relax (z) \]

Hence sum of residue is

\begin {align*} R & =\lim _{z\rightarrow 1}\frac {z}{\ \left (z-i\right ) \left (z+1\right ) \left (z+i\right ) }e^{zt}+\lim _{z\rightarrow i}\ \frac {z}{\left ( z-1\right ) \left (z+1\right ) \left (z+i\right ) }e^{zt}\\ & +\lim _{z\rightarrow -1}\frac {z}{\left (z-1\right ) \left (z-i\right ) \left (z+i\right ) }e^{zt}+\lim _{z\rightarrow -i}\frac {z}{\left (z-1\right ) \left (z-i\right ) \left (z+1\right ) }e^{zt}\\ & \\ & =\ \frac {1}{\ \left (1-i\right ) \left (1+1\right ) \left (1+i\right ) }e^{t}+\ \frac {i}{\left (i-1\right ) \left (i+1\right ) \left (i+i\right ) }e^{it}\ \\ & +\ \frac {-1}{\left (-1-1\right ) \left (-1-i\right ) \left (-1+i\right ) }e^{-t}+\frac {-i}{\left (-i-1\right ) \left (-i-i\right ) \left ( -i+1\right ) }e^{-it}\\ & \\ & =\frac {1}{\ 4}e^{t}+\ \frac {i}{-4i}e^{it}\ +\frac {1}{4}e^{-t}+\frac {-i}{4i}e^{-it}\\ & =\frac {1}{\ 4}\left (e^{t}+e^{-t}\right ) -\frac {1}{2}\left (\cos t\right ) \end {align*}

So inverse Laplace transform of \(\frac {p}{p^{4}-1}\) is \[ \frac {1}{\ 4}\left (e^{t}+e^{-t}\right ) -\frac {1}{2}\left (\cos t\right ) \]

3.13.19 chapter 15, problem 7.11

Problem

Using the \(\delta \) function method, Find the response of the following system to a unit impulse. \(\frac {d^{4}y}{dy^{4}}-y=\delta \left (t-t_{0}\right ) \)

Solution

Taking the laplace transform of each side gives (assuming initial conditions for the system are at rest)

\begin {align*} Yp^{4}-Y & =e^{-pt_{0}}\\ Y\ & =\frac {e^{-pt_{0}}}{p^{4}-1}\\ Y\ & =\frac {e^{-pt_{0}}}{\left (p^{2}-1\right ) \left (p^{2}+1\right ) } \end {align*}

Finding the inverse laplace of \(\frac {1}{\left (p-1\right ) \left ( p+1\right ) \left (p^{2}+1\right ) }=\frac {1}{\left (p-1\right ) \left ( p+1\right ) }\frac {1}{\left (p^{2}+1\right ) }=GH\). Then \(g\relax (t) =\frac {e^{t}-e^{-t}}{2}\,\)using L7 and\(,\) \(h\relax (t) =\sin t\) using L3. Hence the inverse transform is \(\ \ \ \ \ \)

\begin {align*} g\relax (t) \circledast h\relax (t) & =\int _{0}^{t}\frac {e^{\tau }-e^{-\tau }}{2}\sin \left (t-\tau \right ) \ d\tau \\ & =\frac {1}{2}\left (\sinh t-\sin t\right ) \end {align*}

Using L28 with the result above we get

\[ y\relax (t) =\left \{ \begin {array} [c]{lll}\frac {1}{2}\left (\sinh \left (t-t_{0}\right ) -\sin \left (t-t_{0}\right ) \right ) & & t>t_{0}\\ 0 & & t<t_{0}\end {array} \right . \]

Or by expressing \(\sinh \) using \(\exp \), the above becomes

\[ y\relax (t) =\left \{ \begin {array} [c]{lll}\frac {1}{4}\left (e^{t-t_{0}}-e^{-t+t_{0}}-2\sin \left (t-t_{0}\right ) \right ) & & t>t_{0}\\ 0 & & t<t_{0}\end {array} \right . \]

3.13.20 chapter 15, problem 7.7

Problem

Using the \(\delta \) function method, Find the response of the following system to a unit impulse. \(y^{\prime \prime }+2y^{\prime }+y=\delta \left ( t-t_{0}\right ) \)

Solution

Take the laplace transform of each side we get (assume initial conditions for a system at rest)

\begin {align*} Yp^{2}+2Yp+Y & =e^{-pt_{0}}\\ Y\ & =\frac {e^{-pt_{0}}}{p^{2}+2p+1}\\ Y\ & =\frac {e^{-pt_{0}}}{\left (p+1\right ) ^{2}} \end {align*}

Using L28 and L6 (for \(k=1\))

\[ y\relax (t) =\left \{ \begin {array} [c]{lll}\left (t-t_{0}\right ) e^{-\left (t-t_{0}\right ) } & & t>t_{0}\\ 0 & & t<t_{0}\end {array} \right . \]

3.13.21 chapter 15, problem 7.9

Problem

Using the \(\delta \) function method, Find the response of the following system to a unit impulse. \(y^{\prime \prime }+2y^{\prime }+10y=\delta \left ( t-t_{0}\right ) \)

Solution

Taking the laplace transform of each side we get (assume initial conditions for a system at rest)\begin {align*} Yp^{2}+2Yp+10Y & =e^{-pt_{0}}\\ Y\ & =\frac {e^{-pt_{0}}}{p^{2}+2p+10}\\ Y\ & =\frac {e^{-pt_{0}}}{\left (p-a\right ) \left (p-b\right ) } \end {align*}

Where \(a=-1+3i,\ b=-1-3i\) the roots of \(p^{2}+2p+10\). Using L28 and L7\[ y\relax (t) =\left \{ \begin {array} [c]{lll}\frac {e^{a\left (t-t_{0}\right ) }-e^{b\left (t-t_{0}\right ) }}{\left ( -b\right ) -\left (-a\right ) } & & t>t_{0}\\ 0 & & t<t_{0}\end {array} \right . \] Replacing values for \(a,b\) gives\begin {align*} y\relax (t) & =\frac {e^{a\left (t-t_{0}\right ) }-e^{b\left ( t-t_{0}\right ) }}{a-b}\\ & =\frac {e^{\left (-1+3i\right ) \left (t-t_{0}\right ) }-e^{\left ( -1-3i\right ) \left (t-t_{0}\right ) }}{\left (-1+3i\right ) -\left ( -1-3i\right ) }\\ & =\frac {e^{\left (-1+3i\right ) \left (t-t_{0}\right ) }-e^{\left ( -1-3i\right ) \left (t-t_{0}\right ) }}{6i}\\ & =\frac {\ e^{-t+t_{0}+3it-3it_{0}}-e^{-t+t_{0}-3it+3it_{0}}}{6i}\\ & =e^{-t+t_{0}}\frac {\ e^{3i\left (t-t_{0}\right ) }-e^{-3i\left ( t-t_{0}\right ) }}{6i}\\ & =e^{-t+t_{0}}\left (\frac {1}{3}\right ) \left (\frac {\ e^{3i\left ( t-t_{0}\right ) }-e^{-3i\left (t-t_{0}\right ) }}{2i}\right ) \\ & =\frac {e^{-t+t_{0}}}{3}\sin 3\left (t-t_{0}\right ) \end {align*}

Therefore\[ y\relax (t) =\left \{ \begin {array} [c]{lll}\frac {e^{-t+t_{0}}}{3}\sin 3\left (t-t_{0}\right ) & & t>t_{0}\\ 0 & & t<t_{0}\end {array} \right . \]