| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x -y-\left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \cos \left (x\right ) \cos \left (t \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-\sin \left (x \right ) y+\sin \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+4 x y-4 x^{2} y+\left (-x^{3}+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3-2 x y-\left (x^{2}+\frac {1}{y^{2}}+\frac {1}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x \left (y-1\right )+y+2+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y \left (1-y^{\prime }\right ) = x^{2} y^{\prime }+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a^{2} \left (y^{\prime }-1\right ) = x^{2} y^{\prime }+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-\sin \left (x \right )^{2}+y^{\prime } \sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -y+\left (3 x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = \left (2 x +1\right ) \left (1-y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} v-\left ({\mathrm e}^{v}+2 u v-2 u \right ) v^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (y \,{\mathrm e}^{x y}+1\right )+\left (x y \,{\mathrm e}^{x y}+{\mathrm e}^{x y}+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}-\left (2+x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-2 x y-y^{2}-\left (x^{2}+2 x y-y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (y^{2}-3 x^{2}\right )+x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \cos \left (x \right )-y \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \cos \left (x \right )+y \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-1+2 y+y^{\prime } \left (-x^{2}+1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right ) = 1-x y-3 x^{2}+2 x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+y-\left (y^{2}+2 x y+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -x^{3}+y^{3} = x y \left (y y^{\prime }+x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (x^{2} y^{2}+x^{2}+y^{2}\right )+x \left (x^{2}+y^{2}-x^{2} y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x -2 y+1+\left (3 x -2 y+3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (y\right ) \left (x +\sin \left (y\right )\right )+2 x^{2} \cos \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (9 x +4 y+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-x y^{3} {\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+\left (x^{2}-3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3 \tan \left (x \right )-2 \cos \left (y\right )\right ) \sec \left (x \right )^{2}+\tan \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +2 y-1+\left (2 x +4 y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 \sin \left (y\right )-5 x +2 x^{2} \cot \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1+6 x \,{\mathrm e}^{x -y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x \left (3 x y-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y-y^{3} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+x \left (x^{2} \ln \left (y\right )-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (y\right ) \sin \left (2 x \right )+\left (\cos \left (y\right )^{2}-\cos \left (x \right )^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} k \,{\mathrm e}^{2 v}-u -2 \,{\mathrm e}^{2 v} \left ({\mathrm e}^{2 v}+k u \right ) v^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \tan \left (x \right ) \sin \left (2 y\right ) = \sin \left (x \right )^{2}+\cos \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +2 y-1-\left (x +2 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (x \tan \left (x \right )+\ln \left (y\right )\right )+\tan \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = x^{k} y^{n}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = x^{k} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 12 x +4 y-8-\left (3 x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 \left (3 x +y\right )^{2}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x = y^{2}-2 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{4}-2 x y+3 x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{3}-x^{3}+3 x y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+6 y^{2}-4 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2-\left (x -y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -4 y-9+\left (4 x +y-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -y+\left (4 x +y-6\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -4 y-3-\left (x -6 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +3 y-5+\left (3 x -y-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x -y+3\right ) y^{\prime }+2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y+2+3 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y-1+\left (2 x +2 y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x +2 y+7+\left (2 x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -2+4 \left (x +y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -3 y+2+3 \left (x +3 y-4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 x -3 y+2-\left (2 x -y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x -4 y+4-\left (1+2 x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +3 y-4+\left (x +4 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +2 y-1-\left (2 x +y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -1-\left (3 x -2 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -3 y+4+3 \left (x -1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -3 y+4+3 \left (x -1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y-4-\left (3 x -y-4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +y-4-\left (3 x -y-4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+y^{2}+1+x \left (x -2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y \left (x^{2}-y+x \right )+\left (x^{2}-2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (1+2 x -y\right )+x \left (3 x -4 y+3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (4 x +y\right )-2 \left (-y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y+1+x \left (x +4 y-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{2}+3 x y-2 y+6 x +x \left (x +2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (y+2 x -2\right )-2 \left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+\left (3 x y+y^{2}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{2}+10 x y-4 y+8+x \left (2 x +2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y^{2}+3 x^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (8 x -9 y\right )+2 x \left (x -3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (2 x^{2}-x y+1\right )+\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}-3 y-x +\left (2 y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3}+y+1+x \left (x -3 y^{2}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +3 y-5-\left (x -y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -2 y+3+2 \left (x +2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +y-4+\left (x -3 y+12\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = a x +b y+c
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3} \sec \left (x \right )^{2}-\left (1-2 y^{2} \tan \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|