Internal
problem
ID
[24460]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
4.
Additional
topics
on
equations
of
first
order
and
first
degree.
Exercises
at
page
61
Problem
number
:
28
Date
solved
:
Thursday, October 02, 2025 at 10:38:54 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=x^2+6*y(x)^2-4*x*y(x)*diff(y(x),x) = 0; ic:=[y(1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=( x^2+6*y[x]^2)-(4*x*y[x])*D[y[x],x]==0; ic={y[1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 - 4*x*y(x)*Derivative(y(x), x) + 6*y(x)**2,0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)