Internal
problem
ID
[24493]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
4.
Additional
topics
on
equations
of
first
order
and
first
degree.
Exercises
at
page
72
Problem
number
:
14
Date
solved
:
Thursday, October 02, 2025 at 10:42:40 PM
CAS
classification
:
[[_homogeneous, `class D`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=y(x)*(2*x^2-x*y(x)+1)+(x-y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]*(2*x^2-x*y[x]+1 )+( x-y[x] )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - y(x))*Derivative(y(x), x) + (2*x**2 - x*y(x) + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out