6.148 Problems 14701 to 14800

Table 6.295: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

14701

\[ {} 4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0 \]

14702

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

14703

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

14704

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

14705

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

14706

\[ {} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

14707

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

14708

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

14709

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

14710

\[ {} y^{\prime \prime \prime \prime }+y = 0 \]

14711

\[ {} y^{\left (5\right )} = 0 \]

14712

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14713

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

14714

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]

14715

\[ {} 3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

14716

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

14717

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

14718

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

14719

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

14720

\[ {} y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

14721

\[ {} y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]

14722

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

14723

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = 0 \]

14724

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]

14725

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]

14726

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

14727

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

14728

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

14729

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]

14730

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14731

\[ {} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

14732

\[ {} y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

14733

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

14734

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

14735

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

14736

\[ {} y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

14737

\[ {} -4 y-3 y^{\prime }+y^{\prime \prime } = 16 x -12 \,{\mathrm e}^{2 x} \]

14738

\[ {} y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

14739

\[ {} y^{\prime \prime }+2 y^{\prime }+10 y = 5 x \,{\mathrm e}^{-2 x} \]

14740

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1 \]

14741

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 x \,{\mathrm e}^{-2 x} \]

14742

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7 \]

14743

\[ {} 4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x \]

14744

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

14745

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

14746

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \]

14747

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x} \]

14748

\[ {} y^{\prime }+y^{\prime \prime \prime } = 2 x^{2}+4 \sin \left (x \right ) \]

14749

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \]

14750

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \]

14751

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 x^{2} {\mathrm e}^{x}-7 \,{\mathrm e}^{x} \]

14752

\[ {} y^{\prime \prime }+y = x \sin \left (x \right ) \]

14753

\[ {} 4 y+y^{\prime \prime } = 12 x^{2}-16 x \cos \left (2 x \right ) \]

14754

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \]

14755

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right ) \]

14756

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

14757

\[ {} y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x} \]

14758

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 9 x \,{\mathrm e}^{2 x} \]

14759

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x} \]

14760

\[ {} 16 y+8 y^{\prime }+y^{\prime \prime } = 8 \,{\mathrm e}^{-2 x} \]

14761

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]

14762

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x} \]

14763

\[ {} y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x} \]

14764

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right ) \]

14765

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \]

14766

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x} \]

14767

\[ {} -y+y^{\prime \prime } = 3 x^{2} {\mathrm e}^{x} \]

14768

\[ {} y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]

14769

\[ {} 4 y+y^{\prime \prime } = 8 \sin \left (2 x \right ) \]

14770

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right ) \]

14771

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x} \]

14772

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

14773

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

14774

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \]

14775

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

14776

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

14777

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{x}+3 x \,{\mathrm e}^{2 x}+5 x^{2} \]

14778

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x \,{\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

14779

\[ {} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

14780

\[ {} y^{\prime \prime \prime \prime }-16 y = x^{2} \sin \left (2 x \right )+x^{4} {\mathrm e}^{2 x} \]

14781

\[ {} y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+\sin \left (2 x \right ) {\mathrm e}^{-x} \]

14782

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = x^{2} \cos \left (x \right ) \]

14783

\[ {} y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

14784

\[ {} -4 y+3 y^{\prime \prime }+y^{\prime \prime \prime \prime } = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

14785

\[ {} y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (2 x \right ) \sin \left (x \right ) \]

14786

\[ {} y^{\prime \prime }+y = \cot \left (x \right ) \]

14787

\[ {} y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

14788

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

14789

\[ {} y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

14790

\[ {} 4 y+y^{\prime \prime } = \sec \left (x \right )^{2} \]

14791

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

14792

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

14793

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

14794

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

14795

\[ {} y-2 y^{\prime }+y^{\prime \prime } = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

14796

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

14797

\[ {} y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

14798

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{x}+1} \]

14799

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \]

14800

\[ {} y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]