Internal
problem
ID
[14755]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.3.
The
method
of
undetermined
coefficients.
Exercises
page
151
Problem
number
:
24
Date
solved
:
Thursday, October 02, 2025 at 09:50:48 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-5*diff(diff(diff(y(x),x),x),x)+7*diff(diff(y(x),x),x)-5*diff(y(x),x)+6*y(x) = 5*sin(x)-12*sin(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-5*D[y[x],{x,3}]+7*D[y[x],{x,2}]-5*D[y[x],x]+6*y[x]==5*Sin[x]-12*Sin[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*y(x) - 5*sin(x) + 12*sin(2*x) - 5*Derivative(y(x), x) + 7*Derivative(y(x), (x, 2)) - 5*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)