Internal
problem
ID
[14770]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.3.
The
method
of
undetermined
coefficients.
Exercises
page
151
Problem
number
:
39
Date
solved
:
Thursday, October 02, 2025 at 09:51:00 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-4*diff(diff(y(x),x),x)+diff(y(x),x)+6*y(x) = 3*x*exp(x)+2*exp(x)-sin(x); ic:=[y(0) = 33/40, D(y)(0) = 0, (D@@2)(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,3}]-4*D[y[x],{x,2}]+D[y[x],x]+6*y[x]==3*x*Exp[x]+2*Exp[x]-Sin[x]; ic={y[0]==33/40,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x*exp(x) + 6*y(x) - 2*exp(x) + sin(x) + Derivative(y(x), x) - 4*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 33/40, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 0} dsolve(ode,func=y(x),ics=ics)