6.143 Problems 14201 to 14300

Table 6.285: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

14201

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

14202

\[ {} y^{\prime \prime \prime }-y^{\prime } = 0 \]

14203

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

14204

\[ {} 4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

14205

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

14206

\[ {} -y-2 y^{\prime }+2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

14207

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

14208

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

14209

\[ {} y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

14210

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

14211

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}} \]

14212

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \]

14213

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

14214

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \]

14215

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

14216

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

14217

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

14218

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

14219

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

14220

\[ {} 4 y+y^{\prime \prime } = x^{2}+\cos \left (x \right ) \]

14221

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2} \]

14222

\[ {} y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x \]

14223

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \]

14224

\[ {} y^{\prime \prime \prime }-y = x^{2} \]

14225

\[ {} -3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 3 x^{2}+\sin \left (x \right ) \]

14226

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 4+{\mathrm e}^{x} \]

14227

\[ {} y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

14228

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = \cos \left (x \right ) \]

14229

\[ {} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = x \ln \left (x \right ) \]

14230

\[ {} 2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 10 x +\frac {10}{x} \]

14231

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

14232

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-y^{\prime } \left (1+x \right )+6 y = x \]

14233

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = \cos \left (x \right )-{\mathrm e}^{2 x} \]

14234

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

14235

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 2 x^{3}-x \,{\mathrm e}^{3 x} \]

14236

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = -3 \,{\mathrm e}^{2 x}+x^{2} \]

14237

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

14238

\[ {} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = \left (\ln \left (x \right )+1\right )^{2} \]

14239

\[ {} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = x^{2}-x \]

14240

\[ {} 4 y+y^{\prime \prime } = \sin \left (x \right )^{2} \]

14241

\[ {} 4 y+y^{\prime \prime } = \sec \left (x \right )^{2} \]

14242

\[ {} -2 y+5 y^{\prime }-3 y^{\prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = {\mathrm e}^{3 x} \]

14243

\[ {} y^{\prime \prime }+y = x \cos \left (x \right ) \]

14244

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

14245

\[ {} y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2} \]

14246

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = x \]

14247

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \]

14248

\[ {} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

14249

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2} \]

14250

\[ {} \sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x} \]

14251

\[ {} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

14252

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

14253

\[ {} -x y+2 y^{\prime }+x y^{\prime \prime } = 2 \,{\mathrm e}^{x} \]

14254

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+y \,{\mathrm e}^{2 x} = {\mathrm e}^{4 x} \]

14255

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

14256

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

14257

\[ {} y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime } = \frac {1}{x^{2}} \]

14258

\[ {} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 4 x^{3} {\mathrm e}^{-x^{2}} \]

14259

\[ {} 3 y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

14260

\[ {} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

14261

\[ {} \left (-x^{2}+2\right ) y+4 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

14262

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

14263

\[ {} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

14264

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

14265

\[ {} \left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \]

14266

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = x^{3} \]

14267

\[ {} x^{2} y^{\prime \prime }-2 n x \left (1+x \right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

14268

\[ {} x^{4} y^{\prime \prime }+2 x^{3} \left (1+x \right ) y^{\prime }+n^{2} y = 0 \]

14269

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

14270

\[ {} \left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1 \]

14271

\[ {} y^{\prime \prime }+x y^{\prime } = x \]

14272

\[ {} y^{\prime \prime } = x \,{\mathrm e}^{x} \]

14273

\[ {} \left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2} \]

14274

\[ {} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

14275

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

14276

\[ {} 2 y^{\prime \prime } = {\mathrm e}^{y} \]

14277

\[ {} y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2} = 0 \]

14278

\[ {} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime } = 0 \]

14279

\[ {} y-x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = -x^{2}+1 \]

14280

\[ {} y^{\prime }+\left (x +2\right ) y^{\prime \prime }+\left (x +2\right )^{2} y^{\prime \prime \prime } = 1 \]

14281

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

14282

\[ {} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

14283

\[ {} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = 0 \]

14284

\[ {} 2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 y y^{\prime } x +6 y^{2} = 0 \]

14285

\[ {} x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

14286

\[ {} x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \]

14287

\[ {} x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0 \]

14288

\[ {} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

14289

\[ {} \left (x y^{\prime }-y\right )^{2}+x^{2} y y^{\prime \prime } = 0 \]

14290

\[ {} x^{3} y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

14291

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = \ln \left (y\right ) y^{2}-x^{2} y^{2} \]

14292

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \]

14293

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

14294

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

14295

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

14296

\[ {} 6 y+18 x y^{\prime }+9 x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime \prime \prime } = 0 \]

14297

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

14298

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

14299

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

14300

\[ {} x^{2}+2 y+4 \left (x +y\right ) y^{\prime }+2 x {y^{\prime }}^{2}+x \left (2 y+x \right ) y^{\prime \prime } = 0 \]