| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }-6 y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y-2 y^{\prime }+2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = x^{2}+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 3 x^{2}+\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 4+{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 10 x +\frac {10}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+x \right )^{2} y^{\prime \prime }-y^{\prime } \left (1+x \right )+6 y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 6 y-5 y^{\prime }+y^{\prime \prime } = \cos \left (x \right )-{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 2 x^{3}-x \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -4 y^{\prime }+y^{\prime \prime \prime } = -3 \,{\mathrm e}^{2 x}+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = \left (\ln \left (x \right )+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = x^{2}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = \sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = \sec \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+5 y^{\prime }-3 y^{\prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y-x^{2} y^{\prime }+y^{\prime \prime } = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -x y+2 y^{\prime }+x y^{\prime \prime } = 2 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+y \,{\mathrm e}^{2 x} = {\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime } = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 4 x^{3} {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+2\right ) y+4 x y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 n x \left (1+x \right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime }+2 x^{3} \left (1+x \right ) y^{\prime }+n^{2} y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = {\mathrm e}^{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = -x^{2}+1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\left (x +2\right ) y^{\prime \prime }+\left (x +2\right )^{2} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 y y^{\prime } x +6 y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} \left (x y^{\prime }-y\right )^{2}+x^{2} y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = \ln \left (y\right ) y^{2}-x^{2} y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 6 y+18 x y^{\prime }+9 x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+2 y+4 \left (x +y\right ) y^{\prime }+2 x {y^{\prime }}^{2}+x \left (2 y+x \right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|