56.24.2 problem Ex 2

Internal problem ID [14211]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VII, Linear differential equations with constant coefficients. Article 47. Particular integral. Page 100
Problem number : Ex 2
Date solved : Thursday, October 02, 2025 at 09:26:44 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{{\mathrm e}^{x}} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)+3*diff(y(x),x)+2*y(x) = exp(exp(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_2 \,{\mathrm e}^{x}+{\mathrm e}^{{\mathrm e}^{x}}-c_1 \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.047 (sec). Leaf size: 25
ode=D[y[x],{x,2}]+3*D[y[x],x]+2*y[x]==Exp[Exp[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} \left (e^{e^x}+c_2 e^x+c_1\right ) \end{align*}
Sympy. Time used: 0.310 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) - exp(exp(x)) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + \left (C_{2} + e^{e^{x}}\right ) e^{- x}\right ) e^{- x} \]