| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x y^{\prime }+\left (1+x \right ) y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+x \right ) y^{\prime }+4 x^{2} y = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right )-2 \left (1+x \right ) y = y^{{5}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+x y^{2} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x y^{\prime }+3 y+{\mathrm e}^{x} x^{4} y^{5} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {1+y}{1+x} = \sqrt {1+y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y \left (3 y+2 x y^{\prime }\right )+x^{2} \left (4 y+3 x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} \left (3 y-6 x y^{\prime }\right )-x \left (y-2 x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{3} y-y^{2}-\left (2 x^{4}+x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+y^{2}-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x y^{\prime }-y}{\sqrt {x^{2}-y^{2}}} = x y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +y-\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = x^{2}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+2 y+y^{2}\right ) y^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y+2 x^{2} y-x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y y^{\prime }+y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-a y+b y^{2} = c \,x^{2 a}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x^{2} y = x^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x \right )^{2} y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y+x^{4} y^{4} {\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = \sqrt {x^{2}-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (\frac {y}{x}\right ) x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right )-x y = a x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2} \left (x y^{\prime }+3 y\right )-2 y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 x y-3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{2}-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) y-x \left (1+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y+\left (x^{3}+y^{2} x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+y^{2}\right ) \left (y y^{\prime }+x \right ) = \left (x^{2}+y^{2}+x \right ) \left (x y^{\prime }-y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{2} x^{3}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+y^{2}\right ) \left (y y^{\prime }+x \right )+\sqrt {x^{2}+y^{2}+1}\, \left (y-x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y^{2} \ln \left (x \right )+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{4} x^{3}+x^{2} y^{3}+x y^{2}+y+\left (y^{3} x^{4}-y^{2} x^{3}-x^{3} y+x \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+y^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x y^{\prime }-y\right )^{2} = 8 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) {y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y = x^{2}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = -x y^{\prime }+x^{4} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x y^{\prime }-y\right )^{2} = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 x y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = \left (1+x \right ) {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = a^{2} y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right ) = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+\frac {y {y^{\prime }}^{2}}{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2} = x^{2} y^{2}+x^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+\frac {1}{y^{\prime }}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-2 \left (x y-2\right ) y^{\prime }+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 {y^{\prime }}^{2} = 9 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|