56.7.1 problem Ex 1

Internal problem ID [14105]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 14. Equations reducible to linear equations (Bernoulli). Page 21
Problem number : Ex 1
Date solved : Thursday, October 02, 2025 at 09:13:45 AM
CAS classification : [_rational, _Bernoulli]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-2 \left (1+x \right ) y&=y^{{5}/{2}} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 64
ode:=(-x^2+1)*diff(y(x),x)-2*(1+x)*y(x) = y(x)^(5/2); 
dsolve(ode,y(x), singsol=all);
 
\[ -\frac {-1+\left (\frac {3 \left (x -1\right )^{3} \ln \left (1+x \right )}{32}-\frac {3 \left (x -1\right )^{3} \ln \left (x -1\right )}{32}+c_1 \,x^{3}+\left (-3 c_1 -\frac {3}{16}\right ) x^{2}+\left (3 c_1 +\frac {9}{16}\right ) x -c_1 -\frac {5}{8}\right ) y^{{3}/{2}}}{y^{{3}/{2}}} = 0 \]
Mathematica. Time used: 2.35 (sec). Leaf size: 76
ode=(1-x^2)*D[y[x],x]-2*(1+x)*y[x]==y[x]^(5/2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {8 \sqrt [3]{2}}{\left (32 c_1 x^3-6 x^2-96 c_1 x^2+18 x-3 (x-1)^3 \log (x-1)+3 (x-1)^3 \log (x+1)+96 c_1 x-20-32 c_1\right ){}^{2/3}}\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - x**2)*Derivative(y(x), x) - (2*x + 2)*y(x) - y(x)**(5/2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out