| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = y^{2}+2 y-3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-1\right ) y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+6 y = 10
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = 4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = 9-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+\sqrt {16-y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime \prime }\left (t \right ) = 4 y \left (t \right )+{\mathrm e}^{t}, y^{\prime \prime }\left (t \right ) = 4 x \left (t \right )-{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {1-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 5-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 x y^{\prime }-78 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (4-y^{2}\right ) y^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{3}+1\right ) y^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+y^{2}\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x \right ) y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+y^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x -2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime }-3 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 y+y^{\prime } = 3 x -6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y-4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 18
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (y-3\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-2+2 y\right ) y^{\prime } = 2 x -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} = 4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 6 \sqrt {y}+5 x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 2 \cos \left (x \right )-2 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = \sec \left (\ln \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\sin \left (x \right ) y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 x y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = \frac {1}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+{y^{\prime }}^{2} = \frac {1}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 {y^{\prime }}^{3} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x y\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|