6.83 Problems 8201 to 8300

Table 6.165: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

8201

\[ {} y^{\prime } = y^{2}+2 y-3 \]

8202

\[ {} \left (y-1\right ) y^{\prime } = 1 \]

8203

\[ {} y^{\prime \prime }+4 y^{\prime }+6 y = 10 \]

8204

\[ {} {y^{\prime }}^{2} = 4 y \]

8205

\[ {} {y^{\prime }}^{2} = 9-y^{2} \]

8206

\[ {} y y^{\prime }+\sqrt {16-y^{2}} = 0 \]

8207

\[ {} {y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1 \]

8208

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+3 y \left (t \right )] \]

8209

\[ {} [x^{\prime \prime }\left (t \right ) = 4 y \left (t \right )+{\mathrm e}^{t}, y^{\prime \prime }\left (t \right ) = 4 x \left (t \right )-{\mathrm e}^{t}] \]

8210

\[ {} y^{\prime } = \sqrt {1-y^{2}} \]

8211

\[ {} y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (t \right ) \]

8212

\[ {} y^{\prime } = f \left (x \right ) \]

8213

\[ {} y^{\prime \prime } = f \left (x \right ) \]

8214

\[ {} x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3} = 0 \]

8215

\[ {} y^{\prime } = 5-y \]

8216

\[ {} y^{\prime } = 4+y^{2} \]

8217

\[ {} y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y = 0 \]

8218

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 x y^{\prime }-78 y = 0 \]

8219

\[ {} y^{\prime } = y-y^{2} \]

8220

\[ {} y^{\prime } = y-y^{2} \]

8221

\[ {} y^{\prime }+2 x y^{2} = 0 \]

8222

\[ {} y^{\prime }+2 x y^{2} = 0 \]

8223

\[ {} y^{\prime }+2 x y^{2} = 0 \]

8224

\[ {} y^{\prime }+2 x y^{2} = 0 \]

8225

\[ {} x^{\prime \prime }+x = 0 \]

8226

\[ {} x^{\prime \prime }+x = 0 \]

8227

\[ {} x^{\prime \prime }+x = 0 \]

8228

\[ {} x^{\prime \prime }+x = 0 \]

8229

\[ {} -y+y^{\prime \prime } = 0 \]

8230

\[ {} -y+y^{\prime \prime } = 0 \]

8231

\[ {} -y+y^{\prime \prime } = 0 \]

8232

\[ {} -y+y^{\prime \prime } = 0 \]

8233

\[ {} y^{\prime } = 3 y^{{2}/{3}} \]

8234

\[ {} x y^{\prime } = 2 y \]

8235

\[ {} y^{\prime } = y^{{2}/{3}} \]

8236

\[ {} y^{\prime } = \sqrt {x y} \]

8237

\[ {} x y^{\prime } = y \]

8238

\[ {} y^{\prime }-y = x \]

8239

\[ {} \left (4-y^{2}\right ) y^{\prime } = x^{2} \]

8240

\[ {} \left (y^{3}+1\right ) y^{\prime } = x^{2} \]

8241

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime } = y^{2} \]

8242

\[ {} \left (y-x \right ) y^{\prime } = x +y \]

8243

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

8244

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

8245

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

8246

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

8247

\[ {} x y^{\prime } = y \]

8248

\[ {} y^{\prime } = 1+y^{2} \]

8249

\[ {} y^{\prime } = y^{2} \]

8250

\[ {} y^{\prime } = y^{2} \]

8251

\[ {} y^{\prime } = y^{2} \]

8252

\[ {} y^{\prime } = y^{2} \]

8253

\[ {} y^{\prime } = y^{2} \]

8254

\[ {} y y^{\prime } = 3 x \]

8255

\[ {} y y^{\prime } = 3 x \]

8256

\[ {} y y^{\prime } = 3 x \]

8257

\[ {} 4 y+y^{\prime \prime } = 0 \]

8258

\[ {} 4 y+y^{\prime \prime } = 0 \]

8259

\[ {} 4 y+y^{\prime \prime } = 0 \]

8260

\[ {} 4 y+y^{\prime \prime } = 0 \]

8261

\[ {} 4 y+y^{\prime \prime } = 0 \]

8262

\[ {} 4 y+y^{\prime \prime } = 0 \]

8263

\[ {} y^{\prime } = x -2 y \]

8264

\[ {} y^{\prime } = x^{2}+y^{2} \]

8265

\[ {} 2 y^{\prime \prime }-3 y^{2} = 0 \]

8266

\[ {} 2 y+y^{\prime } = 3 x -6 \]

8267

\[ {} y^{\prime } = x \sqrt {y} \]

8268

\[ {} x y^{\prime } = 2 x \]

8269

\[ {} y^{\prime } = 2 \]

8270

\[ {} y^{\prime } = 2 y-4 \]

8271

\[ {} x y^{\prime } = y \]

8272

\[ {} y^{\prime \prime }+9 y = 18 \]

8273

\[ {} x y^{\prime \prime }-y^{\prime } = 0 \]

8274

\[ {} y^{\prime \prime } = y^{\prime } \]

8275

\[ {} y^{\prime } = y \left (y-3\right ) \]

8276

\[ {} 3 x y^{\prime }-2 y = 0 \]

8277

\[ {} \left (-2+2 y\right ) y^{\prime } = 2 x -1 \]

8278

\[ {} x y^{\prime }+y = 2 x \]

8279

\[ {} y^{\prime } = x^{2}+y^{2} \]

8280

\[ {} {y^{\prime }}^{2} = 4 x^{2} \]

8281

\[ {} y^{\prime } = 6 \sqrt {y}+5 x^{3} \]

8282

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right )-2 \sin \left (x \right ) \]

8283

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

8284

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

8285

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = \sec \left (\ln \left (x \right )\right ) \]

8286

\[ {} y^{\prime }+\sin \left (x \right ) y = x \]

8287

\[ {} y^{\prime }-2 x y = {\mathrm e}^{x} \]

8288

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

8289

\[ {} y^{\prime \prime }+y = {\mathrm e}^{x^{2}} \]

8290

\[ {} x y^{\prime }+y = \frac {1}{y^{2}} \]

8291

\[ {} 1+{y^{\prime }}^{2} = \frac {1}{y^{2}} \]

8292

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

8293

\[ {} \left (1-x y\right ) y^{\prime } = y^{2} \]

8294

\[ {} y^{\prime \prime }+9 y = 5 \]

8295

\[ {} 2 y+y^{\prime } = 3 x \]

8296

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

8297

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

8298

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

8299

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

8300

\[ {} y^{\prime } = x^{2}-y^{2} \]