| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{2} \left (1+x \right ) y^{\prime \prime }-\left (2 x +1\right ) \left (x y^{\prime }-y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} \left (1+x \right ) y^{\prime \prime \prime }-\left (4 x +2\right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3-x \right ) y-\left (4-x \right ) x y^{\prime }+2 \left (2-x \right ) x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+4 \left (x +a \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime }+b x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right ) \left (x -2\right ) y^{\prime \prime }+\left (4 x -6\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \left (x -1\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x +2\right ) y^{\prime \prime }+2 y^{\prime } \left (1+x \right )-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (-1+{\mathrm e}^{x}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y-3 x y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }-y^{\prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x +2\right ) y^{\prime \prime }+y^{\prime } \left (1+x \right )-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\left (\frac {1}{2}-x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {9}{4}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {25}{4}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = \frac {1}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime }-\frac {y}{x} = \cos \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 x^{3} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y = \frac {1}{1-x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+y^{\prime }-x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+x^{3} y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+x y^{\prime }-y \,{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+x^{5} y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } \cos \left (x \right )-\sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }-4 x y^{\prime }+5 y = \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} R^{\prime \prime } = -\frac {k}{R^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (y^{\prime }\right ) = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2}-1+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+20 y = 24
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x \right ) y^{\prime } = y-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 25+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime } = y^{3} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \left (x-1\right ) \left (1-2 x\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+\left (-y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} p^{\prime } = p \left (1-p\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 x y = 8 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 12 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-3 x y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime }-y = 2 x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+x^{2} y^{\prime } = 10 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {x}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y^{\prime } = 2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y-5 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+7 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{\prime }+5 y = 10
\]
|
✓ |
✓ |
✓ |
|