38.1.49 problem 55

Internal problem ID [8210]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 55
Date solved : Tuesday, September 30, 2025 at 05:18:50 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\sqrt {1-y^{2}} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 8
ode:=diff(y(x),x) = (1-y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x +c_1 \right ) \]
Mathematica. Time used: 0.093 (sec). Leaf size: 28
ode=D[y[x],x]==Sqrt[1-y[x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sin (x+c_1)\\ y(x)&\to -1\\ y(x)&\to 1\\ y(x)&\to \text {Interval}[\{-1,1\}] \end{align*}
Sympy. Time used: 0.131 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sqrt(1 - y(x)**2) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sin {\left (C_{1} + x \right )} \]