2.2.2 Problems 101 to 200

Table 2.17: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

101

\begin{align*} y^{\prime }&=2 y x +1 \\ \end{align*}

[_linear]

0.929

102

\begin{align*} 2 y^{\prime } x&=y+2 \cos \left (x \right ) x \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

1.741

103

\begin{align*} y^{\prime }+p \left (x \right ) y&=0 \\ \end{align*}

[_separable]

1.296

104

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) \\ \end{align*}

[_linear]

1.200

105

\begin{align*} \left (x +y\right ) y^{\prime }&=x -y \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.019

106

\begin{align*} 2 x y^{\prime } y&=x^{2}+2 y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.129

107

\begin{align*} y^{\prime } x&=y+2 \sqrt {y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.359

108

\begin{align*} \left (x -y\right ) y^{\prime }&=x +y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.206

109

\begin{align*} x \left (x +y\right ) y^{\prime }&=y \left (x -y\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.256

110

\begin{align*} \left (x +2 y\right ) y^{\prime }&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.967

111

\begin{align*} y^{2} y^{\prime } x&=x^{3}+y^{3} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.318

112

\begin{align*} x^{2} y^{\prime }&=y x +x^{2} {\mathrm e}^{\frac {y}{x}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

2.846

113

\begin{align*} x^{2} y^{\prime }&=y x +y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.986

114

\begin{align*} x y^{\prime } y&=x^{2}+3 y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.206

115

\begin{align*} \left (x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.934

116

\begin{align*} x y^{\prime } y&=y^{2}+x \sqrt {4 x^{2}+y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

8.060

117

\begin{align*} y^{\prime } x&=y+\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.892

118

\begin{align*} y^{\prime } y+x&=\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.263

119

\begin{align*} x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.526

120

\begin{align*} y^{\prime }&=\sqrt {x +y+1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.629

121

\begin{align*} y^{\prime }&=\left (4 x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.024

122

\begin{align*} \left (x +y\right ) y^{\prime }&=1 \\ \end{align*}

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.198

123

\begin{align*} x^{2} y^{\prime }+2 y x&=5 y^{3} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.137

124

\begin{align*} y^{2} y^{\prime }+2 x y^{3}&=6 x \\ \end{align*}

[_separable]

1.638

125

\begin{align*} y^{\prime }&=y+y^{3} \\ \end{align*}

[_quadrature]

0.812

126

\begin{align*} x^{2} y^{\prime }+2 y x&=5 y^{4} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.707

127

\begin{align*} y^{\prime } x +6 y&=3 x y^{{4}/{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

9.424

128

\begin{align*} 2 y^{\prime } x +y^{3} {\mathrm e}^{-2 x}&=2 y x \\ \end{align*}

[_Bernoulli]

2.633

129

\begin{align*} y^{2} \left (y^{\prime } x +y\right ) \sqrt {x^{4}+1}&=x \\ \end{align*}

[_Bernoulli]

9.792

130

\begin{align*} 3 y^{2} y^{\prime }+y^{3}&={\mathrm e}^{-x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.244

131

\begin{align*} 3 y^{2} y^{\prime } x&=3 x^{4}+y^{3} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.174

132

\begin{align*} x \,{\mathrm e}^{y} y^{\prime }&=2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.632

133

\begin{align*} 2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime }&=4 x^{2}+\sin \left (y\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.193

134

\begin{align*} \left ({\mathrm e}^{y}+x \right ) y^{\prime }&=x \,{\mathrm e}^{-y}-1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.026

135

\begin{align*} 2 x +3 y+\left (2 y+3 x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.286

136

\begin{align*} 4 x -y+\left (6 y-x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.165

137

\begin{align*} 3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

6.661

138

\begin{align*} 2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

1.741

139

\begin{align*} x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

1.724

140

\begin{align*} 1+y \,{\mathrm e}^{y x}+\left (2 y+x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

23.365

141

\begin{align*} \cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

3.111

142

\begin{align*} x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}}&=0 \\ \end{align*}

[_exact]

2.069

143

\begin{align*} 3 x^{2} y^{3}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

0.296

144

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

9.554

145

\begin{align*} \frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

10.767

146

\begin{align*} \frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _exact, _rational]

2.213

147

\begin{align*} y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.634

148

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.504

149

\begin{align*} y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.126

150

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.700

151

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.394

152

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x&=2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.470

153

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.902

154

\begin{align*} y^{\prime \prime }&=\left (x +y^{\prime }\right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

0.500

155

\begin{align*} y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.249

156

\begin{align*} y^{3} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.187

157

\begin{align*} y^{\prime \prime }&=2 y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.572

158

\begin{align*} y y^{\prime \prime }&=3 {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.419

159

\begin{align*} y^{\prime }&=f \left (a x +b y+c \right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.776

160

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\ \end{align*}

[_Bernoulli]

2.383

161

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y \ln \left (y\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.021

162

\begin{align*} y^{\prime } x -4 x^{2} y+2 y \ln \left (y\right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.974

163

\begin{align*} y^{\prime }&=\frac {x -y-1}{x +y+3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.012

164

\begin{align*} y^{\prime }&=\frac {2 y-x +7}{4 x -3 y-18} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

21.864

165

\begin{align*} y^{\prime }&=\sin \left (x -y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.240

166

\begin{align*} y^{\prime }&=-\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.274

167

\begin{align*} y^{\prime }+y^{2}&=x^{2}+1 \\ \end{align*}

[_Riccati]

1.477

168

\begin{align*} y^{\prime }+2 y x&=1+x^{2}+y^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.213

169

\begin{align*} y&=y^{\prime } x -\frac {{y^{\prime }}^{2}}{4} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.210

170

\begin{align*} r y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.698

171

\begin{align*} x^{\prime }&=x-x^{2} \\ x \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.887

172

\begin{align*} x^{\prime }&=10 x-x^{2} \\ x \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.713

173

\begin{align*} x^{\prime }&=1-x^{2} \\ x \left (0\right ) &= 3 \\ \end{align*}

[_quadrature]

1.415

174

\begin{align*} x^{\prime }&=9-4 x^{2} \\ x \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

3.859

175

\begin{align*} x^{\prime }&=3 x \left (5-x\right ) \\ x \left (0\right ) &= 8 \\ \end{align*}

[_quadrature]

0.757

176

\begin{align*} x^{\prime }&=3 x \left (5-x\right ) \\ x \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

1.677

177

\begin{align*} x^{\prime }&=4 x \left (7-x\right ) \\ x \left (0\right ) &= 11 \\ \end{align*}

[_quadrature]

0.749

178

\begin{align*} x^{\prime }&=7 x \left (x-13\right ) \\ x \left (0\right ) &= 17 \\ \end{align*}

[_quadrature]

1.874

179

\begin{align*} x^{3}+3 y-y^{\prime } x&=0 \\ \end{align*}

[_linear]

1.412

180

\begin{align*} x y^{2}+3 y^{2}-x^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

1.975

181

\begin{align*} y x +y^{2}-x^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.273

182

\begin{align*} 2 x y^{3}+{\mathrm e}^{x}+\left (3 y^{2} x^{2}+\sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

2.408

183

\begin{align*} 3 y+x^{4} y^{\prime }&=2 y x \\ \end{align*}

[_separable]

1.852

184

\begin{align*} 2 x y^{2}+x^{2} y^{\prime }&=y^{2} \\ \end{align*}

[_separable]

1.937

185

\begin{align*} 2 x^{2} y+x^{3} y^{\prime }&=1 \\ \end{align*}

[_linear]

1.421

186

\begin{align*} x^{2} y^{\prime }+2 y x&=y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.813

187

\begin{align*} y^{\prime } x +2 y&=6 \sqrt {y}\, x^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.158

188

\begin{align*} y^{\prime }&=1+x^{2}+y^{2}+y^{2} x^{2} \\ \end{align*}

[_separable]

2.375

189

\begin{align*} x^{2} y^{\prime }&=y x +3 y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.372

190

\begin{align*} 6 x y^{3}+2 y^{4}+\left (9 y^{2} x^{2}+8 x y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.227

191

\begin{align*} 4 x y^{2}+y^{\prime }&=5 x^{4} y^{2} \\ \end{align*}

[_separable]

1.962

192

\begin{align*} x^{3} y^{\prime }&=x^{2} y-y^{3} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

58.067

193

\begin{align*} y^{\prime }+3 y&=3 x^{2} {\mathrm e}^{-3 x} \\ \end{align*}

[[_linear, ‘class A‘]]

2.039

194

\begin{align*} y^{\prime }&=x^{2}-2 y x +y^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.075

195

\begin{align*} {\mathrm e}^{x}+y \,{\mathrm e}^{y x}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

2.809

196

\begin{align*} 2 x^{2} y-x^{3} y^{\prime }&=y^{3} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

62.662

197

\begin{align*} 3 x^{5} y^{2}+x^{3} y^{\prime }&=2 y^{2} \\ \end{align*}

[_separable]

1.967

198

\begin{align*} y^{\prime } x +3 y&=\frac {3}{x^{{3}/{2}}} \\ \end{align*}

[_linear]

2.396

199

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y&=1 \\ \end{align*}

[_linear]

1.299

200

\begin{align*} y^{\prime } x&=6 y+12 x^{4} y^{{2}/{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.816