2.2.72 Problems 7101 to 7200

Table 2.157: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

7101

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

7102

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

7103

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

7104

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.299

7105

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.396

7106

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

7107

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

7108

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

7109

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.589

7110

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

7111

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.602

7112

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

7113

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\cos \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.474

7114

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.516

7115

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.086

7116

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.339

7117

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.355

7118

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.369

7119

\begin{align*} y^{\prime \prime }&=2 y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.655

7120

\begin{align*} y^{3} y^{\prime \prime }&=k \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.226

7121

\begin{align*} y y^{\prime \prime }&=-1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.760

7122

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x&=1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.540

7123

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.803

7124

\begin{align*} \left (1+y\right ) y^{\prime \prime }&=3 {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.801

7125

\begin{align*} r^{\prime \prime }&=-\frac {k}{r^{2}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

54.526

7126

\begin{align*} y^{\prime \prime }&=\frac {3 k y^{2}}{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.789

7127

\begin{align*} y^{\prime \prime }&=2 k y^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.558

7128

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.984

7129

\begin{align*} r^{\prime \prime }&=\frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.871

7130

\begin{align*} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.690

7131

\begin{align*} y y^{\prime \prime }-3 {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.652

7132

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.566

7133

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.775

7134

\begin{align*} \left (1+y\right ) y^{\prime \prime }&=3 {y^{\prime }}^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -{\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.315

7135

\begin{align*} y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.047

7136

\begin{align*} y^{\prime \prime }&=2 y^{\prime } y \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.733

7137

\begin{align*} 2 y^{\prime \prime }&={\mathrm e}^{y} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.135

7138

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x&=1 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.692

7139

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=x^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.894

7140

\begin{align*} y^{\prime } y-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.204

7141

\begin{align*} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.691

7142

\begin{align*} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.249

7143

\begin{align*} -a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Abel]

6.386

7144

\begin{align*} a y^{3} x +b y^{2}+y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _Abel]

4.859

7145

\begin{align*} y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-a -1}&=0 \\ \end{align*}

[_Abel]

5.466

7146

\begin{align*} y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )}&=0 \\ \end{align*}

[_Abel]

9.111

7147

\begin{align*} x^{2} y^{\prime }+x y^{3}+a y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

7.010

7148

\begin{align*} \left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

16.806

7149

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=0 \\ \end{align*}

[_separable]

1.697

7150

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.112

7151

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.141

7152

\begin{align*} \left (-x^{2}+1\right ) {y^{\prime }}^{2}+1&=0 \\ \end{align*}

[_quadrature]

0.347

7153

\begin{align*} y^{\prime }&={\mathrm e}^{a x}+a y \\ \end{align*}

[[_linear, ‘class A‘]]

0.925

7154

\begin{align*} \left (1+{y^{\prime }}^{2}\right )^{3}&=a^{2} {y^{\prime \prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

21.542

7155

\begin{align*} x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

[_separable]

2.376

7156

\begin{align*} y^{\prime }&=a x y^{2} \\ \end{align*}

[_separable]

3.461

7157

\begin{align*} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.002

7158

\begin{align*} x y \left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

4.095

7159

\begin{align*} \frac {x}{1+y}&=\frac {y y^{\prime }}{x +1} \\ \end{align*}

[_separable]

1.957

7160

\begin{align*} y^{\prime }+b^{2} y^{2}&=a^{2} \\ \end{align*}

[_quadrature]

4.164

7161

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

2.431

7162

\begin{align*} \cos \left (y\right ) \sin \left (x \right )&=\cos \left (x \right ) \sin \left (y\right ) y^{\prime } \\ \end{align*}

[_separable]

2.612

7163

\begin{align*} a x y^{\prime }+2 y&=x y^{\prime } y \\ \end{align*}

[_separable]

4.372

7164

\begin{align*} y^{\prime \prime } x +\left (x +n \right ) y^{\prime }+\left (n +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.760

7165

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.250

7166

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.631

7167

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+a^{3} x^{2} y&=2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.637

7168

\begin{align*} y^{\prime \prime }+a \,x^{2} y&=x +1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.307

7169

\begin{align*} x^{4} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.085

7170

\begin{align*} x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.639

7171

\begin{align*} \left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.667

7172

\begin{align*} \left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.754

7173

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.589

7174

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.582

7175

\begin{align*} x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (\left (1-n \right ) x -\left (6-4 n \right ) x^{2}\right ) y^{\prime }+n \left (1-n \right ) x y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.869

7176

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.723

7177

\begin{align*} \left (a^{2}+x^{2}\right ) y^{\prime \prime }+y^{\prime } x -n^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.460

7178

\begin{align*} a^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.437

7179

\begin{align*} y^{\prime \prime } x +y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.502

7180

\begin{align*} y^{\prime \prime } x +y^{\prime }+p x y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.431

7181

\begin{align*} y^{\prime \prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

1.510

7182

\begin{align*} x^{3} y^{\prime \prime }-\left (2 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.089

7183

\begin{align*} x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.050

7184

\begin{align*} \left (-x^{2}+x \right ) y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.029

7185

\begin{align*} x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-3 x^{2}+1\right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_elliptic, _class_I]]

0.460

7186

\begin{align*} y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.231

7187

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.011

7188

\begin{align*} x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_elliptic, _class_II]]

0.454

7189

\begin{align*} 4 \left (1-x \right ) x y^{\prime \prime }-4 y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

2.265

7190

\begin{align*} x^{3} y^{\prime \prime }+y&=x^{{3}/{2}} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.103

7191

\begin{align*} 2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x}&=\sqrt {x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.131

7192

\begin{align*} \left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y&=3 x^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.756

7193

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

0.690

7194

\begin{align*} 2 \left (1-x \right ) x y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.202

7195

\begin{align*} 2 \left (1-x \right ) x y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

0.658

7196

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

0.685

7197

\begin{align*} 2 \left (1-x \right ) x y^{\prime \prime }+y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.637

7198

\begin{align*} 4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.407

7199

\begin{align*} y^{\prime }+y^{2}&=\frac {a^{2}}{x^{4}} \\ \end{align*}

[_rational, _Riccati]

4.635

7200

\begin{align*} u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.139