2.2.71 Problems 7001 to 7100

Table 2.155: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

7001

\begin{align*} y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

2.590

7002

\begin{align*} y^{\prime }&=\left (x^{2}+2 y-1\right )^{{2}/{3}}-x \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.051

7003

\begin{align*} y^{\prime } x +y&=x^{2} \left ({\mathrm e}^{x}+1\right ) y^{2} \\ \end{align*}

[_Bernoulli]

3.885

7004

\begin{align*} 2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.806

7005

\begin{align*} y^{\prime }+a y&=k \,{\mathrm e}^{b x} \\ \end{align*}

[[_linear, ‘class A‘]]

1.644

7006

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.258

7007

\begin{align*} y^{\prime }+8 x^{3} y^{3}+2 y x&=0 \\ \end{align*}

[_Bernoulli]

1.881

7008

\begin{align*} \left (x y \sqrt {x^{2}-y^{2}}+x \right ) y^{\prime }&=-x^{2} \sqrt {x^{2}-y^{2}}+y \\ \end{align*}

[NONE]

45.447

7009

\begin{align*} y^{\prime }+a y&=b \sin \left (k x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.891

7010

\begin{align*} y^{\prime } x -y^{2}+1&=0 \\ \end{align*}

[_separable]

3.124

7011

\begin{align*} \left (y^{2}+a \sin \left (x \right )\right ) y^{\prime }&=\cos \left (x \right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.605

7012

\begin{align*} y^{\prime } x&=x +y+{\mathrm e}^{\frac {y}{x}} x \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.464

7013

\begin{align*} y^{\prime }+y \cos \left (x \right )&={\mathrm e}^{-\sin \left (x \right )} \\ \end{align*}

[_linear]

1.984

7014

\begin{align*} y^{\prime } x -y \left (\ln \left (y x \right )-1\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

3.283

7015

\begin{align*} x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.399

7016

\begin{align*} y^{\prime } x +a y+b \,x^{n}&=0 \\ \end{align*}

[_linear]

2.803

7017

\begin{align*} y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.043

7018

\begin{align*} y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10.138

7019

\begin{align*} \left (3+6 y x +x^{2}\right ) y^{\prime }+2 x +2 y x +3 y^{2}&=0 \\ \end{align*}

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.623

7020

\begin{align*} x^{2} y^{\prime }+x^{2}+y x +y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.231

7021

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right )&=0 \\ \end{align*}

[_linear]

3.207

7022

\begin{align*} \left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1&=0 \\ \end{align*}

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.233

7023

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+y x -3 x y^{2}&=0 \\ \end{align*}

[_separable]

4.623

7024

\begin{align*} \left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right )&=0 \\ \end{align*}

[_separable]

4.029

7025

\begin{align*} \left (1+x^{2}+y^{2}\right ) y^{\prime }+2 y x +x^{2}+3&=0 \\ \end{align*}

[_exact, _rational]

1.834

7026

\begin{align*} \cos \left (x \right ) y^{\prime }+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right )&=0 \\ \end{align*}

[_linear]

3.286

7027

\begin{align*} y^{2}+12 x^{2} y+\left (2 y x +4 x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.642

7028

\begin{align*} \left (x^{2}-y\right ) y^{\prime }+x&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

1.971

7029

\begin{align*} \left (x^{2}-y\right ) y^{\prime }-4 y x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

20.595

7030

\begin{align*} x y^{\prime } y+x^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.763

7031

\begin{align*} 2 x y^{\prime } y+3 x^{2}-y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.786

7032

\begin{align*} \left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.843

7033

\begin{align*} \left (y x -1\right )^{2} x y^{\prime }+\left (y^{2} x^{2}+1\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.181

7034

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.757

7035

\begin{align*} 3 y^{2} y^{\prime } x +y^{3}-2 x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.575

7036

\begin{align*} 2 y^{3} y^{\prime }+x y^{2}-x^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.117

7037

\begin{align*} \left (2 x y^{3}+y x +x^{2}\right ) y^{\prime }-y x +y^{2}&=0 \\ \end{align*}

[_rational]

2.122

7038

\begin{align*} \left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x&=0 \\ \end{align*}

[_separable]

2.156

7039

\begin{align*} y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x}&=0 \\ \end{align*}

[_separable]

2.468

7040

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.849

7041

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.171

7042

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.534

7043

\begin{align*} 6 y^{\prime \prime }-11 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

7044

\begin{align*} y^{\prime \prime }+2 y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.211

7045

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.053

7046

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.055

7047

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.062

7048

\begin{align*} y^{\prime \prime \prime \prime }-a^{2} y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.053

7049

\begin{align*} y^{\prime \prime }-2 k y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.258

7050

\begin{align*} y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.256

7051

\begin{align*} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _quadrature]]

0.032

7052

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

7053

\begin{align*} 3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.047

7054

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.051

7055

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.225

7056

\begin{align*} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.045

7057

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.049

7058

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.057

7059

\begin{align*} 36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.053

7060

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.099

7061

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

7062

\begin{align*} y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.284

7063

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.071

7064

\begin{align*} y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

7065

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.063

7066

\begin{align*} y^{\prime \prime \prime }+8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.043

7067

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.049

7068

\begin{align*} y^{\prime }+2 y^{\prime \prime \prime }+y^{\left (5\right )}&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.060

7069

\begin{align*} y^{\prime \prime }&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.846

7070

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.368

7071

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.362

7072

\begin{align*} y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.384

7073

\begin{align*} 3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.090

7074

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.266

7075

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.301

7076

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{i x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.346

7077

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.316

7078

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.320

7079

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

7080

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

7081

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

7082

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.187

7083

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.776

7084

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.167

7085

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.489

7086

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

7087

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.408

7088

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-2 x}+x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

7089

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.321

7090

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.423

7091

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right )+{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

7092

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.457

7093

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.883

7094

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.425

7095

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=5 \sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

7096

\begin{align*} y^{\prime \prime }+9 y&=8 \cos \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= -1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.572

7097

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (2 x -3\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.438

7098

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.411

7099

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

7100

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454