| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\ln \left (y^{\prime }\right )+y^{\prime } x +a&=y \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| \begin{align*}
\ln \left (y^{\prime }\right )+y^{\prime } x +a +b y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.766 |
|
| \begin{align*}
\ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.463 |
|
| \begin{align*}
\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right )&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
2.839 |
|
| \begin{align*}
a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.580 |
|
| \begin{align*}
y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
19.543 |
|
| \begin{align*}
y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
2.167 |
|
| \begin{align*}
y^{\prime } \ln \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\
\end{align*} |
[_Clairaut] |
✓ |
✓ |
✓ |
✗ |
12.283 |
|
| \begin{align*}
\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right )&=y \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.414 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
y^{\prime \prime }&=x +\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {c1} \cos \left (a x \right )+\operatorname {c2} \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.023 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.737 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {c1} \,{\mathrm e}^{a x}+\operatorname {c2} \,{\mathrm e}^{-b x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.948 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.102 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.223 |
|
| \begin{align*}
y^{\prime \prime }+y&=a x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }+y&=a \cos \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }+y&=8 \cos \left (x \right ) \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }+y&=a \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (a x \right ) \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.704 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \left (\cos \left (x \right )-x \sin \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.577 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{2 x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime \prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.283 |
|
| \begin{align*}
y^{\prime \prime }-2 y&=4 x^{2} {\mathrm e}^{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.402 |
|
| \begin{align*}
y^{\prime \prime }-a^{2} y&=x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime \prime }&=a x +b y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.501 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=\cos \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.539 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=\cot \left (a x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.363 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.530 |
|
| \begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| \begin{align*}
\left (b x +a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| \begin{align*}
\left (x^{2}+a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.021 |
|
| \begin{align*}
\left (-x^{2}+a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.917 |
|
| \begin{align*}
y^{\prime \prime }&=\left (x^{2}+a \right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.885 |
|
| \begin{align*}
\left (b^{2} x^{2}+a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.032 |
|
| \begin{align*}
\left (c \,x^{2}+b x +a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.200 |
|
| \begin{align*}
\left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.692 |
|
| \begin{align*}
a \,x^{k} y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.153 |
|
| \begin{align*}
\left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[_ellipsoidal] |
✗ |
✓ |
✓ |
✗ |
1.153 |
|
| \begin{align*}
\left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[_ellipsoidal] |
✗ |
✓ |
✗ |
✗ |
2.233 |
|
| \begin{align*}
y^{\prime \prime }&=2 \csc \left (x \right )^{2} y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.599 |
|
| \begin{align*}
a \csc \left (x \right )^{2} y+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✗ | ✓ | ✓ | ✗ | 0.876 |
|
| \begin{align*}
\left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✗ |
✗ |
3.245 |
|
| \begin{align*}
y^{\prime \prime }&=\left (a^{2}+\left (-1+p \right ) p \csc \left (x \right )^{2}+\left (-1+q \right ) q \sec \left (x \right )^{2}\right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.301 |
|
| \begin{align*}
\left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[_ellipsoidal] |
✗ |
✓ |
✓ |
✗ |
1.310 |
|
| \begin{align*}
y^{\prime \prime }&=\left (1+2 \tan \left (x \right )^{2}\right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.654 |
|
| \begin{align*}
-\left (a^{2}-b \,{\mathrm e}^{x}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.128 |
|
| \begin{align*}
-\left (a^{2}-{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.119 |
|
| \begin{align*}
\left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.183 |
|
| \begin{align*}
a \,{\mathrm e}^{b x} y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.099 |
|
| \begin{align*}
\left (a +b \cosh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.729 |
|
| \begin{align*}
\left (a +b \sinh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
4.207 |
|
| \begin{align*}
\left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[_ellipsoidal] |
✗ |
✓ |
✓ |
✗ |
0.850 |
|
| \begin{align*}
\frac {\left (a +b \right ) y}{x^{2}}+y^{\prime \prime }&=0 \\
\end{align*} |
[_Titchmarsh] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
y x -y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.138 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (x -6\right ) x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (3 x^{2}+2 x +1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}+x^{2}-\cos \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.647 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=8 x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=50 \cos \left (x \right ) \cosh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=8 \sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.587 |
|
| \begin{align*}
\csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
10.135 |
|
| \begin{align*}
\csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x \tan \left (a \right )} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
8.352 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.190 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (a x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x}+x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
-4 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
-4 y-3 y^{\prime }+y^{\prime \prime }&=10 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.352 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.324 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=\cosh \left (x \right ) {\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|