2.2.58 Problems 5701 to 5800

Table 2.129: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

5701

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a&=y \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.721

5702

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a +b y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

4.766

5703

\begin{align*} \ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

3.463

5704

\begin{align*} \ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.839

5705

\begin{align*} a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.580

5706

\begin{align*} y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x&=0 \\ \end{align*}

[_separable]

19.543

5707

\begin{align*} y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.167

5708

\begin{align*} y^{\prime } \ln \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\ \end{align*}

[_Clairaut]

12.283

5709

\begin{align*} \ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right )&=y \\ \end{align*}

[_dAlembert]

1.414

5710

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.551

5711

\begin{align*} y^{\prime \prime }&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.803

5712

\begin{align*} y^{\prime \prime }&=\operatorname {c1} \cos \left (a x \right )+\operatorname {c2} \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.023

5713

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.737

5714

\begin{align*} y^{\prime \prime }&=\operatorname {c1} \,{\mathrm e}^{a x}+\operatorname {c2} \,{\mathrm e}^{-b x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.948

5715

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.102

5716

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.223

5717

\begin{align*} y^{\prime \prime }+y&=a x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.299

5718

\begin{align*} y^{\prime \prime }+y&=a \cos \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

5719

\begin{align*} y^{\prime \prime }+y&=8 \cos \left (x \right ) \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.580

5720

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.395

5721

\begin{align*} y^{\prime \prime }+y&=a \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

5722

\begin{align*} y^{\prime \prime }+y&=\sin \left (a x \right ) \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.704

5723

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.444

5724

\begin{align*} y^{\prime \prime }+y&=x \left (\cos \left (x \right )-x \sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.577

5725

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.570

5726

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

5727

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

5728

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.446

5729

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{2 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

5730

\begin{align*} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.283

5731

\begin{align*} y^{\prime \prime }-2 y&=4 x^{2} {\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.339

5732

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.989

5733

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.665

5734

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

5735

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.402

5736

\begin{align*} y^{\prime \prime }-a^{2} y&=x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

5737

\begin{align*} y^{\prime \prime }&=a x +b y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

5738

\begin{align*} y^{\prime \prime }+a^{2} y&=x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.501

5739

\begin{align*} y^{\prime \prime }+a^{2} y&=\cos \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

5740

\begin{align*} y^{\prime \prime }+a^{2} y&=\cot \left (a x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.363

5741

\begin{align*} y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.530

5742

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.156

5743

\begin{align*} \left (b x +a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.106

5744

\begin{align*} \left (x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.021

5745

\begin{align*} \left (-x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.917

5746

\begin{align*} y^{\prime \prime }&=\left (x^{2}+a \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.885

5747

\begin{align*} \left (b^{2} x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.032

5748

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.200

5749

\begin{align*} \left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.692

5750

\begin{align*} a \,x^{k} y+y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.153

5751

\begin{align*} \left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

1.153

5752

\begin{align*} \left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

2.233

5753

\begin{align*} y^{\prime \prime }&=2 \csc \left (x \right )^{2} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.599

5754

\begin{align*} a \csc \left (x \right )^{2} y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.876

5755

\begin{align*} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.245

5756

\begin{align*} y^{\prime \prime }&=\left (a^{2}+\left (-1+p \right ) p \csc \left (x \right )^{2}+\left (-1+q \right ) q \sec \left (x \right )^{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.301

5757

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

1.310

5758

\begin{align*} y^{\prime \prime }&=\left (1+2 \tan \left (x \right )^{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.654

5759

\begin{align*} -\left (a^{2}-b \,{\mathrm e}^{x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.128

5760

\begin{align*} -\left (a^{2}-{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.119

5761

\begin{align*} \left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.183

5762

\begin{align*} a \,{\mathrm e}^{b x} y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.099

5763

\begin{align*} \left (a +b \cosh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.729

5764

\begin{align*} \left (a +b \sinh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.207

5765

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

0.850

5766

\begin{align*} \frac {\left (a +b \right ) y}{x^{2}}+y^{\prime \prime }&=0 \\ \end{align*}

[_Titchmarsh]

0.329

5767

\begin{align*} y x -y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.138

5768

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.223

5769

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (x -6\right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

5770

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.351

5771

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (3 x^{2}+2 x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

5772

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

5773

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}+x^{2}-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.647

5774

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=8 x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.393

5775

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=50 \cos \left (x \right ) \cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.589

5776

\begin{align*} 3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.304

5777

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.407

5778

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

5779

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=8 \sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.587

5780

\begin{align*} \csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.135

5781

\begin{align*} \csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x \tan \left (a \right )} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.352

5782

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.190

5783

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (a x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.350

5784

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.408

5785

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x}+x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

5786

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.330

5787

\begin{align*} -4 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.174

5788

\begin{align*} -4 y-3 y^{\prime }+y^{\prime \prime }&=10 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

5789

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.221

5790

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.494

5791

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.364

5792

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

5793

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

5794

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.172

5795

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.324

5796

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.296

5797

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.221

5798

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\cosh \left (x \right ) {\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

5799

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.171

5800

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.279