2.2.57 Problems 5601 to 5700

Table 2.127: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

5601

\begin{align*} 2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-a&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.624

5602

\begin{align*} 4 y^{2} {y^{\prime }}^{2} x^{2}&=\left (y^{2}+x^{2}\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.557

5603

\begin{align*} 4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

0.411

5604

\begin{align*} 3 x y^{4} {y^{\prime }}^{2}-y^{5} y^{\prime }+1&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.628

5605

\begin{align*} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-a&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.604

5606

\begin{align*} 9 \left (-x^{2}+1\right ) y^{4} {y^{\prime }}^{2}+6 x y^{5} y^{\prime }+4 x^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

21.940

5607

\begin{align*} {y^{\prime }}^{3}&=b x +a \\ \end{align*}

[_quadrature]

0.223

5608

\begin{align*} {y^{\prime }}^{3}&=a \,x^{n} \\ \end{align*}

[_quadrature]

1.052

5609

\begin{align*} {y^{\prime }}^{3}+x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.544

5610

\begin{align*} {y^{\prime }}^{3}&=\left (a +b y+c y^{2}\right ) f \left (x \right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.313

5611

\begin{align*} {y^{\prime }}^{3}&=\left (y-a \right )^{2} \left (y-b \right )^{2} \\ \end{align*}

[_quadrature]

1.866

5612

\begin{align*} {y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.096

5613

\begin{align*} {y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.654

5614

\begin{align*} {y^{\prime }}^{3}+y^{\prime }+a -b x&=0 \\ \end{align*}

[_quadrature]

2.247

5615

\begin{align*} {y^{\prime }}^{3}+y^{\prime }-y&=0 \\ \end{align*}

[_quadrature]

80.513

5616

\begin{align*} y^{\prime }+{y^{\prime }}^{3}&={\mathrm e}^{y} \\ \end{align*}

[_quadrature]

3.332

5617

\begin{align*} {y^{\prime }}^{3}-7 y^{\prime }+6&=0 \\ \end{align*}

[_quadrature]

0.198

5618

\begin{align*} {y^{\prime }}^{3}-y^{\prime } x +a y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

44.204

5619

\begin{align*} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.997

5620

\begin{align*} {y^{\prime }}^{3}-2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.932

5621

\begin{align*} {y^{\prime }}^{3}-a x y^{\prime }+x^{3}&=0 \\ \end{align*}

[_quadrature]

3.151

5622

\begin{align*} {y^{\prime }}^{3}+a x y^{\prime }-a y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.397

5623

\begin{align*} {y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.487

5624

\begin{align*} {y^{\prime }}^{3}-2 y^{\prime } y+y^{2}&=0 \\ \end{align*}

[_quadrature]

50.827

5625

\begin{align*} {y^{\prime }}^{3}-a x y y^{\prime }+2 a y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.457

5626

\begin{align*} {y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.525

5627

\begin{align*} {y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.004

5628

\begin{align*} {y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

27.951

5629

\begin{align*} {y^{\prime }}^{3}+{y^{\prime }}^{2}-y&=0 \\ \end{align*}

[_quadrature]

0.414

5630

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{2}&=0 \\ \end{align*}

[_quadrature]

0.426

5631

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.494

5632

\begin{align*} {y^{\prime }}^{3}-a {y^{\prime }}^{2}+b y+a b x&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

33.328

5633

\begin{align*} {y^{\prime }}^{3}+a_{0} {y^{\prime }}^{2}+a_{1} y^{\prime }+a_{2} +a_{3} y&=0 \\ \end{align*}

[_quadrature]

0.322

5634

\begin{align*} {y^{\prime }}^{3}+\left (1-3 x \right ) {y^{\prime }}^{2}-x \left (1-3 x \right ) y^{\prime }-1-x^{3}&=0 \\ \end{align*}

[_quadrature]

0.945

5635

\begin{align*} {y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2}&=0 \\ \end{align*}

[_quadrature]

24.022

5636

\begin{align*} {y^{\prime }}^{3}+\left (\cot \left (x \right ) \cos \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y&=0 \\ \end{align*}

[_quadrature]

0.877

5637

\begin{align*} {y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 y^{2} y^{\prime } x&=0 \\ \end{align*}

[_quadrature]

0.197

5638

\begin{align*} {y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2}&=0 \\ \end{align*}

[_quadrature]

0.227

5639

\begin{align*} {y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+y x +y^{2}\right ) y^{\prime }-x^{3} y^{3}&=0 \\ \end{align*}

[_quadrature]

0.195

5640

\begin{align*} {y^{\prime }}^{3}-\left (y^{4}+x y^{2}+x^{2}\right ) {y^{\prime }}^{2}+x y^{2} \left (y^{4}+x y^{2}+x^{2}\right ) y^{\prime }-x^{3} y^{6}&=0 \\ \end{align*}

[_quadrature]

0.234

5641

\begin{align*} 2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.443

5642

\begin{align*} 2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y&=0 \\ \end{align*}

[_quadrature]

0.404

5643

\begin{align*} 3 {y^{\prime }}^{3}-x^{4} y^{\prime }+2 x^{3} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.323

5644

\begin{align*} 4 {y^{\prime }}^{3}+4 y^{\prime }&=x \\ \end{align*}

[_quadrature]

0.516

5645

\begin{align*} 8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2}&=27 x +27 y \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.575

5646

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.618

5647

\begin{align*} x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x&=0 \\ \end{align*}

[_quadrature]

0.201

5648

\begin{align*} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.349

5649

\begin{align*} 2 x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2}-x&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.599

5650

\begin{align*} 4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.793

5651

\begin{align*} 8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.737

5652

\begin{align*} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.196

5653

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x&=0 \\ \end{align*}

[_quadrature]

0.411

5654

\begin{align*} 2 x^{3} {y^{\prime }}^{3}+6 x^{2} y {y^{\prime }}^{2}-\left (1-6 y x \right ) y y^{\prime }+2 y^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

386.776

5655

\begin{align*} x^{4} {y^{\prime }}^{3}-x^{3} y {y^{\prime }}^{2}-x^{2} y^{2} y^{\prime }+x y^{3}&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

138.777

5656

\begin{align*} x^{6} {y^{\prime }}^{3}-y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.488

5657

\begin{align*} y {y^{\prime }}^{3}-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

5.567

5658

\begin{align*} 2 y {y^{\prime }}^{3}-3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

31.026

5659

\begin{align*} \left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.362

5660

\begin{align*} y^{2} {y^{\prime }}^{3}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.329

5661

\begin{align*} y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.394

5662

\begin{align*} 4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.389

5663

\begin{align*} 16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.384

5664

\begin{align*} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

154.884

5665

\begin{align*} y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

55.273

5666

\begin{align*} y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.998

5667

\begin{align*} {y^{\prime }}^{4}&=\left (y-a \right )^{3} \left (y-b \right )^{2} \\ \end{align*}

[_quadrature]

0.845

5668

\begin{align*} {y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.197

5669

\begin{align*} {y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.214

5670

\begin{align*} {y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.198

5671

\begin{align*} {y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.648

5672

\begin{align*} {y^{\prime }}^{4}-4 x^{2} y {y^{\prime }}^{2}+16 y^{2} y^{\prime } x -16 y^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

36.336

5673

\begin{align*} {y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y&=0 \\ \end{align*}

[_quadrature]

2.308

5674

\begin{align*} 2 {y^{\prime }}^{4}-y^{\prime } y-2&=0 \\ \end{align*}

[_quadrature]

0.925

5675

\begin{align*} {y^{\prime }}^{4} x -2 y {y^{\prime }}^{3}+12 x^{3}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

806.220

5676

\begin{align*} 3 {y^{\prime }}^{5}-y^{\prime } y+1&=0 \\ \end{align*}

[_quadrature]

0.329

5677

\begin{align*} {y^{\prime }}^{6}&=\left (y-a \right )^{4} \left (y-b \right )^{3} \\ \end{align*}

[_quadrature]

1.107

5678

\begin{align*} {y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{4} \left (y-b \right )^{3}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.057

5679

\begin{align*} {y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{3}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.007

5680

\begin{align*} {y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{4}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.610

5681

\begin{align*} x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right )&=a^{2} \\ \end{align*}

[_rational]

13.575

5682

\begin{align*} 2 \sqrt {a y^{\prime }}+y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _Clairaut]

2.158

5683

\begin{align*} \left (x -y\right ) \sqrt {y^{\prime }}&=a \left (1+y^{\prime }\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.285

5684

\begin{align*} 2 \left (1+y\right )^{{3}/{2}}+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[_separable]

3.832

5685

\begin{align*} \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }&=x \\ \end{align*}

[_quadrature]

5.980

5686

\begin{align*} \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }&=y \\ \end{align*}

[_quadrature]

8.026

5687

\begin{align*} \sqrt {1+{y^{\prime }}^{2}}&=y^{\prime } x \\ \end{align*}

[_quadrature]

0.876

5688

\begin{align*} \sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

2.255

5689

\begin{align*} a \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.759

5690

\begin{align*} a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

0.664

5691

\begin{align*} a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+y^{\prime } x -y&=0 \\ \end{align*}

[_Clairaut]

17.441

5692

\begin{align*} \cos \left (y^{\prime }\right )+y^{\prime } x&=y \\ \end{align*}

[_Clairaut]

1.312

5693

\begin{align*} a \cos \left (y^{\prime }\right )+b y^{\prime }+x&=0 \\ \end{align*}

[_quadrature]

0.213

5694

\begin{align*} \sin \left (y^{\prime }\right )+y^{\prime }&=x \\ \end{align*}

[_quadrature]

0.214

5695

\begin{align*} y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right )&=y \\ \end{align*}

[_quadrature]

15.167

5696

\begin{align*} {y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right )&=y \\ \end{align*}

[_dAlembert]

1.069

5697

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2}&=1 \\ \end{align*}

[_Clairaut]

2.237

5698

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.711

5699

\begin{align*} {\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1&=0 \\ \end{align*}

[_quadrature]

20.936

5700

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a&=0 \\ \end{align*}

[_quadrature]

2.347