2.5.22 second order change of variable on y method 1

Table 2.1155: second order change of variable on y method 1 [284]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

227

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.230

262

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.904

377

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.401

379

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=8 x^{{4}/{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.355

526

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.296

819

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.241

903

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.632

1294

\begin{align*} t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.262

1297

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.999

1346

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=2 t^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.796

1350

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=g \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.017

1741

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= -5 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.872

1748

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.411

1750

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

1753

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.582

1811

\begin{align*} y^{\prime \prime } x +\left (-2 x +2\right ) y^{\prime }+\left (x -2\right ) y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

1812

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.614

1813

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=4 \,{\mathrm e}^{-x \left (2+x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.597

1814

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{{5}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.691

1820

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=\cos \left (x \right ) x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.746

1823

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=8 x^{{5}/{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.858

1824

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y&=x^{{7}/{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.766

1825

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y&=3 x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.847

1826

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y&={\mathrm e}^{x} x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.618

1828

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y&={\mathrm e}^{x} x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.810

1829

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y&=2 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.513

1830

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.715

1832

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y&=x^{{5}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.845

1835

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y&=\left (x -1\right )^{3} {\mathrm e}^{x} \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.772

2393

\begin{align*} y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.351

2398

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.415

2433

\begin{align*} \left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.882

2629

\begin{align*} \left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.731

3229

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x +\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.921

3499

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y&={\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.892

3568

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.342

3772

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.705

3773

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.754

3776

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.586

3777

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y&=4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.503

4139

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}+2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.687

5825

\begin{align*} -\left (-x^{2}-x +1\right ) y-\left (2 x +1\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

5826

\begin{align*} 2 \left (2 x^{2}+1\right ) y+4 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

5827

\begin{align*} -\left (-4 x^{2}+3\right ) y-4 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.317

5828

\begin{align*} -\left (-4 x^{2}+3\right ) y-4 y^{\prime } x +y^{\prime \prime }&={\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.474

5829

\begin{align*} y a^{2} x^{2}-2 a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.480

5834

\begin{align*} -2 a \left (-2 a \,x^{2}+1\right ) y-4 a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

5848

\begin{align*} 3 y+2 \cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.688

5849

\begin{align*} 3 y+2 \cot \left (x \right ) y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.612

5871

\begin{align*} b y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.542

5872

\begin{align*} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.483

5873

\begin{align*} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.760

5875

\begin{align*} y \,{\mathrm e}^{2 x}-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.859

5878

\begin{align*} b y+2 \tanh \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.697

5897

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-y x&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.889

5898

\begin{align*} a x y+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.498

5990

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.237

5991

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.678

5992

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.123

5993

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.928

5994

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{5} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.963

5997

\begin{align*} \left (a^{2} x^{2}+2\right ) y-2 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.710

6008

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.295

6009

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.970

6010

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.109

6011

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.093

6013

\begin{align*} \left (-x^{2}+2\right ) y+4 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.408

6017

\begin{align*} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.799

6026

\begin{align*} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.937

6027

\begin{align*} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&={\mathrm e}^{x} x^{2+a} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.441

6028

\begin{align*} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.714

6030

\begin{align*} -2 x^{2} y-x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=1+x +2 \ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.440

6034

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.487

6035

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.741

6038

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.631

6077

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=-2 x +2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.874

6079

\begin{align*} -\left (x^{2}+1\right ) y-4 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.580

6122

\begin{align*} 2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.957

6123

\begin{align*} 2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.415

6124

\begin{align*} 6 y-4 \left (x +1\right ) y^{\prime }+\left (x +1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.126

6125

\begin{align*} 6 y-4 \left (x +1\right ) y^{\prime }+\left (x +1\right )^{2} y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.366

6127

\begin{align*} \left (1-x \right )^{2} y-2 \left (1-x \right )^{2} y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.431

6157

\begin{align*} -\left (4 x^{2}+1\right ) y+4 y^{\prime } x +4 x^{2} y^{\prime \prime }&=4 x^{{3}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.947

6159

\begin{align*} -\left (a^{2} x^{2}+1\right ) y+4 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.509

6161

\begin{align*} \left (x +3\right ) y-2 x \left (2+x \right ) y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.697

6162

\begin{align*} -\left (-4 x^{2}+4 x +1\right ) y+4 x \left (1-2 x \right ) y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

6220

\begin{align*} 2 \left (1+3 x \right ) y+2 x \left (3 x +2\right ) y^{\prime }+x^{2} \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.840

6233

\begin{align*} 2 \left (b x +3 a \right ) y-2 x \left (b x +2 a \right ) y^{\prime }+x^{2} \left (b x +a \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.645

6241

\begin{align*} \left (2 x +1\right ) y-2 x^{2} y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.276

6254

\begin{align*} y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.839

6289

\begin{align*} \left (-2 x^{2}+1\right ) y+4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.434

6290

\begin{align*} \left (8 x^{4}+10 x^{2}+1\right ) y-4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.460

7115

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.086

7150

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.112

7202

\begin{align*} u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.408

7203

\begin{align*} u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.636

7208

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.383

7379

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

7685

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.887

7808

\begin{align*} t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N&=t \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.243

8026

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.997

8035

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.329

8044

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.331

8045

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+4 y x&=4 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

8773

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.877

8798

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

8800

\begin{align*} \sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u&=0 \\ \end{align*}

[_Lienard]

0.512

8810

\begin{align*} u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.315

8820

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.336

8961

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.324

9279

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.251

9342

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.953

9569

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.441

9583

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.396

9585

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.439

10237

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

10238

\begin{align*} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.412

10239

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

10240

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.585

10440

\begin{align*} \cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[_Lienard]

0.592

10441

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=-3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.645

10442

\begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.830

10443

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y&={\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

10444

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y&={\mathrm e}^{x^{2}} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.912

10445

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 \left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.483

10448

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.308

10449

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.386

10457

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.878

12322

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.757

12325

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.704

12326

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.977

12328

\begin{align*} y^{\prime \prime }+2 a x y^{\prime }+y a^{2} x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.469

12336

\begin{align*} y^{\prime \prime }+\sqrt {x}\, y^{\prime }+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.135

12347

\begin{align*} y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.405

12356

\begin{align*} a^{2} y^{\prime \prime }+a \left (a^{2}-2 b \,{\mathrm e}^{-a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{-2 a x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.578

12366

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-y x -{\mathrm e}^{x}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.634

12367

\begin{align*} a x y+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.398

12440

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.075

12442

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.359

12443

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.245

12444

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.655

12445

\begin{align*} \left (a^{2} x^{2}+2\right ) y-2 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.503

12468

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.662

12494

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.690

12507

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.343

12541

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.388

12545

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.299

13691

\begin{align*} y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.973

13697

\begin{align*} y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.863

13707

\begin{align*} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.750

13790

\begin{align*} \left (a \left (a +1\right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.129

13791

\begin{align*} x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.591

13853

\begin{align*} x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.697

13937

\begin{align*} y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.597

13941

\begin{align*} y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.800

13948

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a \left (b +\lambda \right ) {\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.967

14137

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 y \sin \left (x \right )&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.140

14138

\begin{align*} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.473

14140

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-y x&=2 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.765

14141

\begin{align*} y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+y \,{\mathrm e}^{2 x}&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.436

14148

\begin{align*} \left (-x^{2}+2\right ) y+4 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.317

14151

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.360

14153

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.754

14169

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.410

14324

\begin{align*} t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.961

14416

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.611

14561

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.626

14691

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.835

14693

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.839

14696

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y&=\sin \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.101

14700

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.095

14711

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=4 x -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.666

14713

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.301

14718

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.559

14963

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.411

15071

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.730

15164

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.291

15171

\begin{align*} x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x}&=1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.721

15301

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y&=x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.838

15518

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y \left (2\right ) &= -4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.278

15519

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.336

15520

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -12 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.392

15521

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y^{\prime }\left (1\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.389

15522

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.108

16473

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.231

16474

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y&=0 \\ y \left (1\right ) &= 8 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.294

16477

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.309

16478

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.987

16571

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y&=0 \\ y \left (4\right ) &= 0 \\ y^{\prime }\left (4\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.470

16592

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=10 x +12 \\ y \left (1\right ) &= 6 \\ y^{\prime }\left (1\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.608

16598

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.314

16599

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.322

16600

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=22 x +24 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.369

16686

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 \sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.717

16698

\begin{align*} y^{\prime \prime } x +\left (2 x +2\right ) y^{\prime }+2 y&=8 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.184

16973

\begin{align*} x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.999

16999

\begin{align*} t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

1.231

17533

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y&=t^{3}+2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.135

17535

\begin{align*} t y^{\prime \prime }+2 y^{\prime }+t y&=-t \\ y \left (\pi \right ) &= -1 \\ y^{\prime }\left (\pi \right ) &= -\frac {1}{\pi } \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.010

17537

\begin{align*} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y&=16 t^{{3}/{2}} \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (2 \pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.087

17652

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x \right ) \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.300

17656

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.733

17669

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.717

17776

\begin{align*} y^{\prime \prime }-2 t y^{\prime }+t^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.525

17781

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.454

18305

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 \ln \left (x \right )^{2}+12 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.187

18390

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.394

18742

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.404

18801

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.989

18846

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}+2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.687

18871

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=2 t^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.694

18874

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=3 x^{{3}/{2}} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

18876

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=g \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.799

19167

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y&=0 \\ \end{align*}

[_Lienard]

0.765

19172

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.245

19198

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.770

19204

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y&=0 \\ \end{align*}

[_Lienard]

0.719

19207

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=-3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.014

19432

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.911

19434

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.432

19442

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.708

19527

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.647

19684

\begin{align*} t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.866

19687

\begin{align*} t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.109

19772

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=y x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.875

19788

\begin{align*} v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.091

19860

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.579

19861

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.581

19864

\begin{align*} \left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.227

19893

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

3.728

20103

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.648

20105

\begin{align*} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.878

20180

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.431

20181

\begin{align*} x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.263

20186

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}&=n^{2} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.360

20187

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.445

20188

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.458

20192

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.314

20199

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.753

20497

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.440

20502

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.880

20614

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.417

20615

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.834

20616

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}&=n^{2} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.496

20617

\begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.612

20618

\begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.964

20621

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y&={\mathrm e}^{x} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.052

20622

\begin{align*} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.761

20623

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.845

20624

\begin{align*} y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.282

20626

\begin{align*} x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.958

20627

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y&={\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.590

20646

\begin{align*} -\left (x^{2}+1\right ) y-4 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.881

20647

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=-4 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.020

20650

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.949

20652

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.880

20659

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+5\right ) y&=x \,{\mathrm e}^{-\frac {x^{2}}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.763

20675

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.582

20755

\begin{align*} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.282

20789

\begin{align*} x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

20790

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.886

20792

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y&=0 \\ \end{align*}

[_Lienard]

0.893

20793

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=-3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.114

20804

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.126

20874

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}-x \\ y \left (1\right ) &= \pi \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.999

21555

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.547

21617

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.620

22738

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.864

22752

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.830

22773

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.718

22801

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.286

22802

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.344

23081

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.634

23279

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.706

23461

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.531

23468

\begin{align*} y^{\prime \prime } x -2 y^{\prime }+\frac {\left (x^{2}+2\right ) y}{x}&=4+\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.358

25204

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.541

25205

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.087

25206

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.868

25207

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.854

25208

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.841

25209

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= a \\ y^{\prime }\left (1\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.829

25216

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.169

25273

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=t^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.728