2.5.21 second order change of variable on x method 2

Table 2.1153: second order change of variable on x method 2 [801]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

227

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.230

228

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ y \left (2\right ) &= 10 \\ y^{\prime }\left (2\right ) &= 15 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.694

230

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.046

244

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.088

245

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.527

246

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.523

248

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.656

262

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.904

315

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.688

316

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.783

376

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.506

377

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.401

378

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.008

379

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=8 x^{{4}/{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.355

380

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.311

516

\begin{align*} y^{\prime \prime } x -y^{\prime }+36 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.884

819

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.241

820

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ y \left (2\right ) &= 10 \\ y^{\prime }\left (2\right ) &= 15 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.730

822

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.046

833

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.096

834

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.536

835

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.539

837

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.672

860

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.792

861

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.894

902

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.708

903

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.632

904

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.165

905

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=8 x^{{4}/{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.427

906

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.500

1293

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.869

1294

\begin{align*} t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.262

1295

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.029

1296

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.865

1297

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.999

1298

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.997

1299

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.721

1300

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.940

1301

\begin{align*} y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{-t^{2}} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.793

1302

\begin{align*} t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.243

1327

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.778

1328

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.745

1329

\begin{align*} 2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.097

1330

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.980

1331

\begin{align*} 4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.774

1332

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.024

1351

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.717

1352

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.598

1745

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.193

1746

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.871

1747

\begin{align*} x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.678

1810

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=2 x^{2}+2 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.905

1814

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{{5}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.691

1815

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.138

1819

\begin{align*} x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y&=x^{a +1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.405

1821

\begin{align*} y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=8 x^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.399

1827

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=x^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.558

1834

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=\left (x -1\right )^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.733

1837

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=-2 x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.411

2361

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.174

2372

\begin{align*} t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.409

2373

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.766

2374

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.658

2384

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.904

2385

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.161

2399

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.023

2400

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.908

2430

\begin{align*} t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.862

2431

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.737

2432

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.845

2433

\begin{align*} \left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.882

2434

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.016

2435

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.908

2436

\begin{align*} \left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.660

2437

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.854

2439

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.063

2542

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.078

2553

\begin{align*} t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.230

2554

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

2.470

2564

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.789

2565

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.020

2580

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.949

2581

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.787

2627

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.671

2628

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.772

2629

\begin{align*} \left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.731

2630

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.894

2631

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.776

2632

\begin{align*} \left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.549

2633

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.744

2634

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.885

2635

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.099

2636

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.929

3220

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.639

3221

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +16 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.059

3222

\begin{align*} 4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.993

3223

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.417

3224

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x -18 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.290

3225

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y&=\ln \left (x^{2}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.073

3226

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.451

3227

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=1-x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.772

3229

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x +\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.921

3231

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +3 y&=\left (x -1\right ) \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

57.925

3492

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.036

3493

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.982

3564

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.101

3565

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.829

3566

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.017

3567

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=9 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.957

3568

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.342

3574

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.452

3575

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.817

3590

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -8 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.454

3706

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.471

3707

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.934

3772

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.705

3773

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.754

3774

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=9 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.458

3775

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=8 x \ln \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.308

3776

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.586

3777

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y&=4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.503

3779

\begin{align*} x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y&=x^{m} \ln \left (x \right )^{k} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.253

3781

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+25 y&=0 \\ y \left (1\right ) &= \frac {3 \sqrt {3}}{2} \\ y^{\prime }\left (1\right ) &= {\frac {15}{2}} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.121

4138

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.780

4139

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}+2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.687

4508

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.362

4509

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=\frac {5 \ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

23.016

4511

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.805

5845

\begin{align*} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.743

5856

\begin{align*} a \tan \left (\frac {x}{2}\right )^{2} y-\csc \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.579

5861

\begin{align*} y \sin \left (x \right )^{2}-\left (\cot \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.987

5863

\begin{align*} b \tan \left (x \right )^{2} y-2 \csc \left (2 x \right ) \left (1-a \sin \left (x \right )^{2}\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.636

5864

\begin{align*} a \cos \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.582

5865

\begin{align*} a \cot \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.536

5875

\begin{align*} y \,{\mathrm e}^{2 x}-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.859

5892

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.290

5893

\begin{align*} -a^{2} x^{3} y-y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.257

5928

\begin{align*} x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.812

5929

\begin{align*} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.825

5930

\begin{align*} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=4 x^{3} {\mathrm e}^{-x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.014

5940

\begin{align*} a y+y^{\prime }+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.978

5941

\begin{align*} -a y+y^{\prime }+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.938

5969

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.910

5970

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.229

5971

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.921

5972

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=a \,x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.790

5973

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x^{2} \left (x +3\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.414

5974

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=3 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.395

5975

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.598

5976

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.047

5977

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.259

5978

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.838

5979

\begin{align*} -a^{2} y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.033

5990

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.237

5991

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.678

5992

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.123

5993

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.928

5994

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{5} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.963

5995

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.582

5996

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=-x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.904

6001

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.017

6002

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.408

6003

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=a -x +x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.876

6004

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.814

6005

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=5 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.204

6006

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.833

6007

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=\ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.333

6008

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.295

6009

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.970

6010

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.109

6011

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.093

6012

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{2} \left (x^{2}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.684

6015

\begin{align*} 13 y+5 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.096

6016

\begin{align*} 16 y-7 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.826

6018

\begin{align*} \operatorname {a2} y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.398

6026

\begin{align*} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.937

6027

\begin{align*} a \left (a +1\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&={\mathrm e}^{x} x^{2+a} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.441

6030

\begin{align*} -2 x^{2} y-x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=1+x +2 \ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.440

6056

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.663

6057

\begin{align*} -y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.236

6060

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.710

6061

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.656

6062

\begin{align*} n^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.176

6063

\begin{align*} a^{2} y+y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.059

6064

\begin{align*} a^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.135

6122

\begin{align*} 2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.957

6123

\begin{align*} 2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.415

6124

\begin{align*} 6 y-4 \left (x +1\right ) y^{\prime }+\left (x +1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.126

6125

\begin{align*} 6 y-4 \left (x +1\right ) y^{\prime }+\left (x +1\right )^{2} y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.366

6133

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.604

6134

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.845

6143

\begin{align*} -2 y+\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.253

6144

\begin{align*} 8 y+\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.103

6150

\begin{align*} y-\left (x +1\right ) y^{\prime }+2 \left (x +1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.248

6151

\begin{align*} y-\left (x +1\right ) y^{\prime }+2 \left (x +1\right )^{2} y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.776

6160

\begin{align*} 5 y-8 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.009

6177

\begin{align*} -9 y-3 \left (1-3 x \right ) y^{\prime }+\left (1-3 x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.569

6186

\begin{align*} \operatorname {a2} y+\operatorname {a1} \left (b x +a \right ) y^{\prime }+\left (b x +a \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.519

6193

\begin{align*} y x +3 x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.820

6194

\begin{align*} y x +3 x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.361

6202

\begin{align*} y a \,x^{3}-y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.648

6215

\begin{align*} -\left (x +1\right )^{3} y+y^{\prime } x +x^{2} \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.742

6247

\begin{align*} a^{2} y+2 x^{3} y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.105

6249

\begin{align*} b y+2 x^{2} \left (x +a \right ) y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.891

6254

\begin{align*} y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.839

6255

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.829

6270

\begin{align*} -y+\left (1-2 x \right ) \left (1-x \right ) x y^{\prime }+\left (1-x \right )^{2} x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.058

6274

\begin{align*} B y+\left (a -x \right ) \left (b -x \right ) \left (A +2 x \right ) y^{\prime }+\left (a -x \right )^{2} \left (b -x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.808

6275

\begin{align*} -y-2 \left (a -x \right )^{3} y^{\prime }+\left (a -x \right )^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.025

6286

\begin{align*} y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.860

6287

\begin{align*} y+x^{3} \left (3 x^{2}+a \right ) y^{\prime }+x^{6} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.151

6291

\begin{align*} \left (-a^{2}+4 b \right ) y+12 x^{5} y^{\prime }+4 x^{6} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.398

6292

\begin{align*} \left (-a +1\right )^{2} y+a \,x^{2 a -1} y^{\prime }+x^{2 a} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.275

6293

\begin{align*} a^{2} x^{a -1} y+\left (-2 a +1\right ) x^{a} y^{\prime }+x^{a +1} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.715

7114

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.516

7115

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.086

7116

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.339

7117

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.355

7118

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.369

7150

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.112

7316

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.723

7317

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.826

7318

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.776

7319

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.108

7320

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=8 x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.747

7321

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.230

7325

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.237

7339

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.418

7373

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.105

7686

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.009

7687

\begin{align*} y^{\prime \prime } x +\frac {y^{\prime }}{2}+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.997

7688

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.059

7808

\begin{align*} t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N&=t \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.243

7816

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.670

7971

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.014

7973

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.767

8025

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x +\ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.289

8026

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.997

8029

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=\ln \left (x +1\right )^{2}+x -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.394

8039

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.674

8040

\begin{align*} x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y&=\frac {1}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.431

8042

\begin{align*} y^{\prime \prime } x -3 y^{\prime }+\frac {3 y}{x}&=2+x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.456

8187

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.033

8273

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.790

8274

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\sec \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.020

8754

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.471

8755

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.822

8759

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.632

8762

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.137

8764

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.713

8767

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.007

8774

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4}&=-\frac {x^{2}}{2}+\frac {1}{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.339

8799

\begin{align*} p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.026

8802

\begin{align*} y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1}&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.516

8949

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.359

8950

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.138

8951

\begin{align*} \left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.275

8972

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.940

8974

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.511

8975

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.613

8976

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.700

8977

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.084

8979

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.257

8980

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.892

8981

\begin{align*} x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.924

8982

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.497

9236

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.113

9237

\begin{align*} 2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.812

9238

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.577

9240

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.774

9241

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.568

9242

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.104

9243

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.916

9244

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.822

9279

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.251

9336

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {2}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.609

9880

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.870

9881

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.070

9883

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.703

9884

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.672

9885

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.030

9886

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.938

9887

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.932

9888

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.260

10035

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.185

10039

\begin{align*} t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.047

10127

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.483

10147

\begin{align*} x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.704

10148

\begin{align*} x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.638

10149

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.212

10235

\begin{align*} y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.463

10427

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.791

10428

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.188

10429

\begin{align*} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.454

10430

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{3}-x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.535

10431

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.311

10433

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.970

10434

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=8 x^{3} \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

6.516

10435

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=x^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.383

10436

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 \cos \left (x \right )^{3} y&=2 \cos \left (x \right )^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

29.075

10437

\begin{align*} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x}&=4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.089

10457

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.878

12308

\begin{align*} y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.135

12309

\begin{align*} y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.746

12338

\begin{align*} y^{\prime \prime }-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y \,{\mathrm e}^{2 x}-{\mathrm e}^{3 x}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.836

12341

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.085

12342

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.540

12344

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \sin \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.347

12348

\begin{align*} y^{\prime \prime }-\frac {a f^{\prime }\left (x \right ) y^{\prime }}{f \left (x \right )}+b f \left (x \right )^{2 a} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.879

12356

\begin{align*} a^{2} y^{\prime \prime }+a \left (a^{2}-2 b \,{\mathrm e}^{-a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{-2 a x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.578

12364

\begin{align*} y^{\prime \prime } x -y^{\prime }-y a \,x^{3}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.963

12389

\begin{align*} y^{\prime \prime } x -\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.455

12391

\begin{align*} y^{\prime \prime } x +\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.898

12396

\begin{align*} a y+y^{\prime }+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.671

12401

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }-y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.756

12425

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.816

12426

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +a y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.821

12432

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.060

12440

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.075

12441

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y-x \sin \left (x \right )-\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.279

12448

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y-5 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.667

12449

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y-\ln \left (x \right ) x^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.574

12450

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.671

12452

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-x^{3} \sin \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.480

12453

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+b y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.797

12487

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.151

12488

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -9 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.558

12489

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.171

12499

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.375

12543

\begin{align*} 4 x^{2} y^{\prime \prime }+5 y^{\prime } x -y-\ln \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.355

12550

\begin{align*} \left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.117

12554

\begin{align*} \left (27 x^{2}+4\right ) y^{\prime \prime }+27 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.809

12556

\begin{align*} 50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.517

12571

\begin{align*} x^{3} y^{\prime \prime }-x^{2} y^{\prime }+y x -\ln \left (x \right )^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.229

12573

\begin{align*} x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+y x -1&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.143

12578

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.115

12600

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.597

12613

\begin{align*} y^{\prime \prime }&=-\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.664

12615

\begin{align*} y^{\prime \prime }&=-\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.683

12629

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.513

12633

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.845

12639

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.647

12646

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (\alpha +\beta +1\right ) \left (x -a \right )^{2} \left (-b +x \right )+\left (1-\alpha -\beta \right ) \left (-b +x \right )^{2} \left (x -a \right )\right ) y^{\prime }}{\left (x -a \right )^{2} \left (-b +x \right )^{2}}-\frac {\alpha \beta \left (a -b \right )^{2} y}{\left (x -a \right )^{2} \left (-b +x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.280

12664

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x^{2}+a \right ) y^{\prime }}{x^{3}}-\frac {b y}{x^{6}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.586

12672

\begin{align*} y^{\prime \prime }&=-a \,x^{2 a -1} x^{-2 a} y^{\prime }-b^{2} x^{-2 a} y \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.680

12675

\begin{align*} y^{\prime \prime }&=\frac {y^{\prime }}{x \ln \left (x \right )}+\ln \left (x \right )^{2} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.559

12680

\begin{align*} y^{\prime \prime }&=-\frac {\left (\sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }}{\sin \left (x \right )}-y \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.947

12692

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.624

12700

\begin{align*} y^{\prime \prime }&=\frac {\left (3 \sin \left (x \right )^{2}+1\right ) y^{\prime }}{\cos \left (x \right ) \sin \left (x \right )}+\frac {\sin \left (x \right )^{2} y}{\cos \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.435

13722

\begin{align*} y^{\prime \prime } x +\frac {y^{\prime }}{2}+a y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.214

13726

\begin{align*} y^{\prime \prime } x +n y^{\prime }+b \,x^{1-2 n} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.145

13784

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+b y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.546

13812

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.769

13813

\begin{align*} n^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.302

13835

\begin{align*} \left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.786

13838

\begin{align*} \left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8.259

13862

\begin{align*} 2 x \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (a \,x^{2}-c \right ) y^{\prime }+\lambda \,x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

62.914

13866

\begin{align*} 2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (3 a \,x^{2}+2 b x +c \right ) y^{\prime }+\lambda y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

88.898

13870

\begin{align*} 2 x \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (a \left (2-k \right ) x^{2}+b \left (1-k \right ) x -c k \right ) y^{\prime }+\lambda \,x^{1+k} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.217

13874

\begin{align*} b y+2 x^{2} \left (x +a \right ) y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.971

13885

\begin{align*} \left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+2 a x \left (a \,x^{2}+b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.723

13889

\begin{align*} \left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (2 a x +c \right ) \left (a \,x^{2}+b \right ) y^{\prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.457

13894

\begin{align*} \left (x -a \right )^{2} \left (-b +x \right )^{2} y^{\prime \prime }+\left (x -a \right ) \left (-b +x \right ) \left (2 x +\lambda \right ) y^{\prime }+\mu y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.121

13898

\begin{align*} \left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+\left (2 a x +k \right ) \left (a \,x^{2}+b x +c \right ) y^{\prime }+m y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.328

13900

\begin{align*} x^{6} y^{\prime \prime }+x^{3} \left (3 x^{2}+a \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.984

13933

\begin{align*} y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.122

13941

\begin{align*} y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.800

13943

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+b \,{\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.741

13962

\begin{align*} \left (a^{2} {\mathrm e}^{2 \lambda x}+b \right ) y^{\prime \prime }-b \lambda y^{\prime }-a^{2} \lambda ^{2} k^{2} {\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

41.366

13963

\begin{align*} 2 \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+a \lambda \,{\mathrm e}^{\lambda x} y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.865

14118

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.430

14141

\begin{align*} y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+y \,{\mathrm e}^{2 x}&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.436

14142

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.816

14143

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.911

14144

\begin{align*} y+3 x^{5} y^{\prime }+x^{6} y^{\prime \prime }&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.201

14145

\begin{align*} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=4 x^{3} {\mathrm e}^{-x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.759

14168

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.214

14169

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.410

14323

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.945

14324

\begin{align*} t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.961

14325

\begin{align*} t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.722

14326

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x&=0 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.733

14337

\begin{align*} t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x&=4 t^{7} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.708

14561

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.626

14562

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ y \left (2\right ) &= 3 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.622

14690

\begin{align*} x^{2} y^{\prime \prime }-6 y^{\prime } x +10 y&=3 x^{4}+6 x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.555

14691

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.835

14698

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.179

14699

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.905

14700

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.095

14701

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.838

14702

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.951

14703

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.148

14704

\begin{align*} 3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.062

14705

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.921

14706

\begin{align*} 9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.859

14707

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.136

14711

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=4 x -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.666

14712

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.451

14713

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.301

14714

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=2 x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.936

14715

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=4 \sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.152

14717

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.905

14718

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.559

14719

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -5 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.688

14721

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=-6 x^{3}+4 x^{2} \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.217

14722

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=10 x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.287

14723

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=2 x^{3} \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= -8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.823

14726

\begin{align*} \left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.900

14829

\begin{align*} t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.185

14833

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.267

14840

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.922

14849

\begin{align*} y^{\prime \prime } x +y^{\prime }+\frac {\lambda y}{x}&=0 \\ y \left (1\right ) &= 0 \\ y \left ({\mathrm e}^{\pi }\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.171

14850

\begin{align*} y^{\prime \prime } x +y^{\prime }+\frac {\lambda y}{x}&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left ({\mathrm e}^{\pi }\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.053

14851

\begin{align*} 2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1}&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.956

14852

\begin{align*} -\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.477

14963

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.411

14965

\begin{align*} t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x&=0 \\ x \left (1\right ) &= 2 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

2.006

14966

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }-x&=0 \\ x \left (1\right ) &= 1 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.102

14967

\begin{align*} x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z&=0 \\ z \left (1\right ) &= 0 \\ z^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_Emden, _Fowler]]

2.335

14968

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.446

14969

\begin{align*} 4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x&=0 \\ x \left (1\right ) &= 2 \\ x^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.972

14970

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= -2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.678

14971

\begin{align*} 3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z&=0 \\ z \left (1\right ) &= 2 \\ z^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.468

14972

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x&=0 \\ x \left (1\right ) &= -1 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler]]

2.430

15071

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.730

15098

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=2 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.212

15170

\begin{align*} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

24.576

15254

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=t^{7} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.559

15333

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.181

15483

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.227

15485

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.865

15493

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.738

15501

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.161

15502

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.786

15518

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y \left (2\right ) &= -4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.278

15519

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.336

15520

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -12 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.392

15521

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y^{\prime }\left (1\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.389

15522

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.108

15661

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.811

15668

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=-3 x -\frac {3}{x} \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.591

16473

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.231

16474

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y&=0 \\ y \left (1\right ) &= 8 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.294

16476

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ y \left (\sqrt {\pi }\right ) &= 3 \\ y^{\prime }\left (\sqrt {\pi }\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.165

16477

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.309

16478

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.987

16479

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.950

16552

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.920

16555

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.079

16556

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.771

16557

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.777

16559

\begin{align*} x^{2} y^{\prime \prime }-19 y^{\prime } x +100 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.778

16560

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +29 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.157

16561

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.026

16562

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +29 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.036

16563

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.842

16564

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.158

16567

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -25 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.839

16568

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.014

16569

\begin{align*} 3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.873

16570

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.851

16571

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y&=0 \\ y \left (4\right ) &= 0 \\ y^{\prime }\left (4\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.470

16572

\begin{align*} x^{2} y^{\prime \prime }-11 y^{\prime } x +36 y&=0 \\ y \left (1\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler]]

1.064

16575

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y&=0 \\ y \left (1\right ) &= 9 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_Emden, _Fowler]]

1.269

16592

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=10 x +12 \\ y \left (1\right ) &= 6 \\ y^{\prime }\left (1\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.608

16598

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.314

16599

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.322

16600

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=22 x +24 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.369

16601

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.238

16602

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.200

16603

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.165

16604

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=4 x^{2}+2 x +3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.244

16678

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=\frac {5}{x^{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.477

16679

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=\frac {50}{x^{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.638

16680

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=85 \cos \left (2 \ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.092

16682

\begin{align*} 3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y&=4 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.530

16683

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=\frac {10}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.797

16685

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=64 \ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.420

16686

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 \sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.717

16692

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.058

16693

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=12 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.684

16695

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.349

16697

\begin{align*} y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=x^{3} {\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.601

16700

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=\frac {10}{x} \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= -15 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.543

16710

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.691

16713

\begin{align*} 16 y-7 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.742

16718

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.747

16724

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.827

16726

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.564

16729

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.727

16731

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.839

16732

\begin{align*} 9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.747

16742

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=3 \sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.707

16745

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=18 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.989

16747

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y&=10 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.069

16750

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.468

16751

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {1}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.302

16756

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (x +1\right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.642

16757

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.585

16958

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.993

16973

\begin{align*} x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.999

16974

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.026

16999

\begin{align*} t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

1.231

17000

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.449

17019

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -16 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.881

17020

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.012

17031

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

0.997

17174

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}}&=\frac {1}{t} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.850

17352

\begin{align*} 2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.736

17356

\begin{align*} 3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= {\frac {17}{3}} \\ \end{align*}

[[_Emden, _Fowler]]

1.191

17357

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -22 \\ \end{align*}

[[_Emden, _Fowler]]

1.383

17362

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.562

17374

\begin{align*} t^{2} y^{\prime \prime }+a t y^{\prime }+b y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.713

17413

\begin{align*} 3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.543

17414

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.176

17527

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=\ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.287

17528

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.978

17529

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y&=2 \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.614

17613

\begin{align*} 5 y-8 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.328

17614

\begin{align*} 3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.353

17615

\begin{align*} 2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.414

17616

\begin{align*} 2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.548

17618

\begin{align*} 9 x^{2} y^{\prime \prime }-9 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.355

17619

\begin{align*} 2 x^{2} y^{\prime \prime }-2 y^{\prime } x +20 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.413

17620

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.345

17621

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.024

17623

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.010

17624

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.001

17633

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=\frac {1}{x^{5}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.684

17635

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.938

17636

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.033

17637

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.082

17638

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.125

17639

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.582

17640

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +36 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.740

17643

\begin{align*} 3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.769

17644

\begin{align*} 2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.969

17645

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.451

17646

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.635

17651

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x^{2}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.859

17652

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x \right ) \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.300

17654

\begin{align*} 9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y&=\frac {1}{x} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.823

17655

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.332

17656

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.733

17657

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.077

17662

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.990

17663

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=\arctan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.349

17664

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.056

17665

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=\arctan \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.689

17666

\begin{align*} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.023

17667

\begin{align*} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.042

17668

\begin{align*} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.365

17669

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.717

17670

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.779

17671

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7.443

17679

\begin{align*} 6 x^{2} y^{\prime \prime }+5 y^{\prime } x -y&=0 \\ y \left (1\right ) &= a \\ y^{\prime }\left (1\right ) &= b \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.950

17779

\begin{align*} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.540

17780

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.326

17781

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.454

17782

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.092

17783

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.217

17784

\begin{align*} 5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.433

17785

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.375

17786

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=8 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.742

18290

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.221

18291

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.967

18292

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.118

18294

\begin{align*} \left (2+x \right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.698

18300

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=x \left (6-\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.820

18302

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=-\frac {16 \ln \left (x \right )}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.497

18303

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y&=x^{2}-2 x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.326

18304

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.244

18305

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 \ln \left (x \right )^{2}+12 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.187

18306

\begin{align*} \left (x +1\right )^{3} y^{\prime \prime }+3 \left (x +1\right )^{2} y^{\prime }+\left (x +1\right ) y&=6 \ln \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.323

18307

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.894

18394

\begin{align*} y^{\prime \prime } x +\frac {y^{\prime }}{2}+\frac {y}{4}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.706

18724

\begin{align*} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y&=d \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.928

18736

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {\alpha \left (\alpha +1\right ) \mu ^{2} y}{-x^{2}+1}&=0 \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.294

18799

\begin{align*} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.162

18800

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.753

18801

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.989

18802

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +\frac {5 y}{4}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.871

18803

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.726

18805

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.628

18806

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.925

18807

\begin{align*} 2 x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.917

18808

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.003

18809

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +17 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -3 \\ \end{align*}

[[_Emden, _Fowler]]

1.310

18810

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 3 \\ \end{align*}

[[_Emden, _Fowler]]

0.792

18811

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

1.279

18844

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.205

18845

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.327

18846

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}+2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.687

18847

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.838

18879

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.405

18880

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.287

19172

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.245

19180

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime }&=y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8.439

19197

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.471

19198

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.770

19199

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.002

19202

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.360

19206

\begin{align*} y^{\prime \prime } x -y^{\prime }-x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.848

19423

\begin{align*} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.979

19431

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.539

19434

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.432

19483

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.466

19484

\begin{align*} 2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.844

19485

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.150

19487

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.843

19488

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.142

19489

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.596

19490

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.262

19491

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.985

19492

\begin{align*} y^{\prime \prime } x +\left (x^{2}-1\right ) y^{\prime }+x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.998

19527

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.647

19684

\begin{align*} t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.866

19687

\begin{align*} t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.109

19765

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.701

19776

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.653

19785

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.184

19788

\begin{align*} v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.091

19854

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.727

19859

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.654

19893

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

3.728

20092

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.339

20096

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.124

20097

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.008

20098

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y&=\left (x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.820

20099

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.344

20103

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.648

20105

\begin{align*} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.878

20109

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.902

20110

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{m} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.205

20113

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.388

20114

\begin{align*} x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y&=n^{2} x^{m} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.886

20175

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.984

20182

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.701

20183

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.299

20184

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=x^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.240

20185

\begin{align*} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.425

20200

\begin{align*} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.355

20201

\begin{align*} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.176

20204

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.717

20214

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.429

20484

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.709

20485

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.548

20492

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.039

20495

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.601

20496

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.154

20497

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.440

20498

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.179

20499

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.143

20500

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{m} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.339

20502

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.880

20503

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.128

20507

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y&=\left (x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.866

20510

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.229

20514

\begin{align*} \left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.391

20524

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.581

20628

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.386

20629

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.279

20630

\begin{align*} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.800

20631

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +m^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.300

20632

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-y \sin \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.929

20633

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.780

20634

\begin{align*} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.935

20635

\begin{align*} y^{\prime \prime }+\left (\tan \left (x \right )-1\right )^{2} y^{\prime }-n \left (n -1\right ) y \sec \left (x \right )^{4}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.125

20636

\begin{align*} y^{\prime \prime }+\left (3 \sin \left (x \right )-\cot \left (x \right )\right ) y^{\prime }+2 y \sin \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.006

20654

\begin{align*} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.790

20655

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.259

20656

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {a^{2} y}{-x^{2}+1}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.551

20658

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=8 x^{3} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.885

20664

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.331

20666

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.718

20668

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=x^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.070

20670

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x&=m^{2} y \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.166

20671

\begin{align*} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x}&=4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.546

20753

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.989

20755

\begin{align*} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.282

20757

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.439

20759

\begin{align*} x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y&=n^{2} x^{m} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.508

20794

\begin{align*} y^{\prime \prime }-\left (8 \,{\mathrm e}^{2 x}+2\right ) y^{\prime }+4 \,{\mathrm e}^{4 x} y&={\mathrm e}^{6 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.292

20795

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {\csc \left (x \right )^{2} y}{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.028

20796

\begin{align*} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.407

20797

\begin{align*} y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=8 x^{3} \sin \left (x^{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.601

20798

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 \cos \left (x \right )^{3} y&=2 \cos \left (x \right )^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

22.827

20799

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.381

20803

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.855

20841

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.088

20842

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.522

20858

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.540

20859

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

2.004

20860

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.118

20861

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +3 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

2.339

20862

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.962

20863

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.897

20864

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.637

20867

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=3 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.301

20868

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=x^{2}+x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.957

20869

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.546

20870

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +3 y&=5 x^{2} \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.446

20874

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}-x \\ y \left (1\right ) &= \pi \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.999

20880

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -15 y&={\mathrm e}^{x} x^{4} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.712

21170

\begin{align*} t^{2} x^{\prime \prime }+a t x^{\prime }+x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.637

21172

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+x&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.123

21173

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }-3 x&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.619

21553

\begin{align*} y^{\prime \prime } x +y^{\prime }-\frac {4 y}{x}&=x^{3}+x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.368

21555

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.547

21599

\begin{align*} x^{2} u^{\prime \prime }-3 x u^{\prime }+13 u&=0 \\ u \left (1\right ) &= -1 \\ u^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

3.480

21600

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }-14 y&=x^{3}-3 x^{2}+3 x -8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.562

21602

\begin{align*} x^{2} u^{\prime \prime }-3 x u^{\prime }+13 u&=0 \\ u \left (1\right ) &= -1 \\ u^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

2.656

21604

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-k^{2} \cos \left (x \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.480

21615

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.165

21617

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.620

22302

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=2 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.752

22315

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.778

22616

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.045

22620

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.141

22738

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.864

22752

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.830

22755

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.950

22756

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=x^{2}+16 \ln \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.564

22758

\begin{align*} t^{2} i^{\prime \prime }+2 i^{\prime } t +i&=t \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.096

22760

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=\sqrt {x}+\frac {1}{\sqrt {x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.470

22765

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x^{2}-4 x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.179

22766

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.730

22767

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.859

22768

\begin{align*} \left (2 x +3\right )^{2} y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }-2 y&=24 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.054

22771

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.923

22772

\begin{align*} y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.632

22773

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.718

22774

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+\left (3 \sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }+2 \sin \left (x \right )^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.778

22775

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.160

22790

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=24 x +24 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.491

22797

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ y \left (\frac {1}{2}\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.524

23104

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.750

23274

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.132

23368

\begin{align*} 5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.185

23369

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.868

23370

\begin{align*} 3 x^{2} y^{\prime \prime }+4 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.115

23371

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.961

23372

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.691

23373

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+5 \left (x -1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.585

23374

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.836

23375

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.012

23377

\begin{align*} x^{2} y^{\prime \prime }+\frac {7 y^{\prime } x}{2}-\frac {3 y}{2}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.562

23378

\begin{align*} \left (x +3\right )^{2} y^{\prime \prime }+3 \left (x +3\right ) y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.996

23384

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.476

23385

\begin{align*} x^{2} y^{\prime \prime }+\frac {7 y^{\prime } x}{2}-\frac {3 y}{2}&=0 \\ y \left (-4\right ) &= 1 \\ y^{\prime }\left (-4\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.153

23396

\begin{align*} y^{\prime \prime }-\frac {5 y^{\prime }}{x}+\frac {5 y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.171

23399

\begin{align*} 3 y^{\prime \prime } x -4 y^{\prime }+\frac {5 y}{x}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.076

23400

\begin{align*} \left (x -4\right ) y^{\prime \prime }+4 y^{\prime }-\frac {4 y}{x -4}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.530

23402

\begin{align*} y^{\prime \prime }+\frac {5 y^{\prime }}{x -1}+\frac {4 y}{\left (x -1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.561

23403

\begin{align*} 5 y^{\prime \prime }+\frac {3 y^{\prime }}{x -3}+\frac {3 y}{\left (x -3\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.776

23461

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.531

23465

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -10 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.084

23466

\begin{align*} 3 x^{2} y^{\prime \prime }-2 y^{\prime } x -8 y&=3 x +5 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.316

23502

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.963

23503

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -8 y&={\mathrm e}^{x} \left (x^{2}+2\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.946

23538

\begin{align*} 5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.651

23539

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{{1}/{4}} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.284

23540

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.292

23541

\begin{align*} 2 x^{2} y^{\prime \prime }+7 y^{\prime } x -3 y&=\frac {\ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.173

23542

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=\ln \left (x \right ) \left (\frac {1}{x^{3}}+\frac {1}{x^{5}}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.550

23550

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\ y \left (\frac {1}{4}\right ) &= 0 \\ y^{\prime }\left (\frac {1}{4}\right ) &= {\frac {14}{9}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.664

23761

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\ln \left (x \right ) \\ y \left (1\right ) &= A \\ y \left (2\right ) &= B \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.458

23847

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.954

24039

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.505

24041

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.692

24061

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.559

24077

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+b y&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.029

25190

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-y&=\sqrt {t} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.264

25204

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.541

25205

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.087

25206

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.868

25207

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.854

25208

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.841

25209

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= a \\ y^{\prime }\left (1\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.829

25210

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }-4 y&=t^{4} \\ y \left (-1\right ) &= y_{1} \\ y^{\prime }\left (-1\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.988

25216

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.169

25220

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.869

25222

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.712

25223

\begin{align*} 2 t^{2} y^{\prime \prime }-5 t y^{\prime }+3 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.985

25224

\begin{align*} 9 t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.823

25225

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.964

25227

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }-21 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.605

25228

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.800

25230

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.867

25231

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.828

25232

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+13 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.063

25233

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

0.959

25235

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+4 y&=0 \\ y \left (1\right ) &= -3 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.217

25273

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=t^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.728

25275

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.628

25277

\begin{align*} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.580

25279

\begin{align*} t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=4 t^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.635

25682

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.911

25751

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.173

25752

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\sec \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.148