2.2.49 Problems 4801 to 4900

Table 2.111: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

4801

\begin{align*} y^{\prime } x&=a y+b \left (-x^{2}+1\right ) y^{3} \\ \end{align*}

[_rational, _Bernoulli]

4.793

4802

\begin{align*} y^{\prime } x +2 y&=a \,x^{2 k} y^{k} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.027

4803

\begin{align*} y^{\prime } x&=4 y-4 \sqrt {y} \\ \end{align*}

[_separable]

3.976

4804

\begin{align*} y^{\prime } x +2 y&=\sqrt {1+y^{2}} \\ \end{align*}

[_separable]

4.494

4805

\begin{align*} y^{\prime } x +2 y&=-\sqrt {1+y^{2}} \\ \end{align*}

[_separable]

4.484

4806

\begin{align*} y^{\prime } x&=y+\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.534

4807

\begin{align*} y^{\prime } x&=y+\sqrt {x^{2}-y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17.269

4808

\begin{align*} y^{\prime } x&=y+x \sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.414

4809

\begin{align*} y^{\prime } x&=y-x \left (x -y\right ) \sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7.773

4810

\begin{align*} y^{\prime } x&=y+a \sqrt {y^{2}+b^{2} x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

18.663

4811

\begin{align*} y^{\prime } x&=y+a \sqrt {y^{2}-b^{2} x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

18.906

4812

\begin{align*} y^{\prime } x +\left (\sin \left (y\right )-3 \cos \left (y\right ) x^{2}\right ) \cos \left (y\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

3.227

4813

\begin{align*} y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.111

4814

\begin{align*} y^{\prime } x&=-x \cos \left (\frac {y}{x}\right )^{2}+y \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.297

4815

\begin{align*} y^{\prime } x&=\left (-2 x^{2}+1\right ) \cot \left (y\right )^{2} \\ \end{align*}

[_separable]

3.214

4816

\begin{align*} y^{\prime } x&=y-x \cot \left (\frac {y}{x}\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

7.047

4817

\begin{align*} y^{\prime } x +y+2 x \sec \left (y x \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.506

4818

\begin{align*} y^{\prime } x -y+x \sec \left (\frac {y}{x}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.007

4819

\begin{align*} y^{\prime } x&=y+x \sec \left (\frac {y}{x}\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.289

4820

\begin{align*} y^{\prime } x&=\sin \left (x -y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

4.167

4821

\begin{align*} y^{\prime } x&=y+x \sin \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.749

4822

\begin{align*} y^{\prime } x +\tan \left (y\right )&=0 \\ \end{align*}

[_separable]

3.243

4823

\begin{align*} y^{\prime } x +x +\tan \left (x +y\right )&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.862

4824

\begin{align*} y^{\prime } x&=y-\tan \left (\frac {y}{x}\right ) x \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.869

4825

\begin{align*} y^{\prime } x&=\left (1+y^{2}\right ) \left (x^{2}+\arctan \left (y\right )\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

3.928

4826

\begin{align*} y^{\prime } x&={\mathrm e}^{\frac {y}{x}} x +y \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.703

4827

\begin{align*} y^{\prime } x&=x +y+{\mathrm e}^{\frac {y}{x}} x \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.563

4828

\begin{align*} y^{\prime } x&=y \ln \left (y\right ) \\ \end{align*}

[_separable]

3.200

4829

\begin{align*} y^{\prime } x&=\left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.859

4830

\begin{align*} y^{\prime } x +\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

3.670

4831

\begin{align*} y^{\prime } x&=y-2 x \tanh \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

7.065

4832

\begin{align*} y^{\prime } x +n y&=f \left (x \right ) g \left (x^{n} y\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.768

4833

\begin{align*} y^{\prime } x&=y f \left (x^{m} y^{n}\right ) \\ \end{align*}

[[_homogeneous, ‘class G‘]]

5.097

4834

\begin{align*} \left (x +1\right ) y^{\prime }&=x^{3} \left (3 x +4\right )+y \\ \end{align*}

[_linear]

2.392

4835

\begin{align*} \left (x +1\right ) y^{\prime }&=\left (x +1\right )^{4}+2 y \\ \end{align*}

[_linear]

3.358

4836

\begin{align*} \left (x +1\right ) y^{\prime }&={\mathrm e}^{x} \left (x +1\right )^{n +1}+n y \\ \end{align*}

[_linear]

3.020

4837

\begin{align*} \left (x +1\right ) y^{\prime }&=a y+b x y^{2} \\ \end{align*}

[_rational, _Bernoulli]

5.997

4838

\begin{align*} \left (x +1\right ) y^{\prime }+y+\left (x +1\right )^{4} y^{3}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

5.348

4839

\begin{align*} \left (x +1\right ) y^{\prime }&=\left (1-x y^{3}\right ) y \\ \end{align*}

[_rational, _Bernoulli]

2.533

4840

\begin{align*} \left (x +1\right ) y^{\prime }&=1+y+\left (x +1\right ) \sqrt {1+y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

46.320

4841

\begin{align*} \left (x +a \right ) y^{\prime }&=b x \\ \end{align*}

[_quadrature]

0.240

4842

\begin{align*} \left (x +a \right ) y^{\prime }&=b x +y \\ \end{align*}

[_linear]

3.191

4843

\begin{align*} \left (x +a \right ) y^{\prime }+b \,x^{2}+y&=0 \\ \end{align*}

[_linear]

2.586

4844

\begin{align*} \left (x +a \right ) y^{\prime }&=2 \left (x +a \right )^{5}+3 y \\ \end{align*}

[_linear]

4.150

4845

\begin{align*} \left (x +a \right ) y^{\prime }&=b +c y \\ \end{align*}

[_separable]

3.539

4846

\begin{align*} \left (x +a \right ) y^{\prime }&=-b -c y \\ \end{align*}

[_separable]

3.562

4847

\begin{align*} \left (x +a \right ) y^{\prime }&=b x +c y \\ \end{align*}

[_linear]

3.719

4848

\begin{align*} \left (x +a \right ) y^{\prime }&=y \left (1-a y\right ) \\ \end{align*}

[_separable]

4.418

4849

\begin{align*} \left (a -x \right ) y^{\prime }&=y+\left (c x +b \right ) y^{3} \\ \end{align*}

[_rational, _Bernoulli]

5.451

4850

\begin{align*} 2 y^{\prime } x&=2 x^{3}-y \\ \end{align*}

[_linear]

11.957

4851

\begin{align*} 2 y^{\prime } x +1&=4 i x y+y^{2} \\ \end{align*}

[_rational, _Riccati]

57.595

4852

\begin{align*} 2 y^{\prime } x&=y \left (1+y^{2}\right ) \\ \end{align*}

[_separable]

2.633

4853

\begin{align*} 2 y^{\prime } x +y \left (1+y^{2}\right )&=0 \\ \end{align*}

[_separable]

7.075

4854

\begin{align*} 2 y^{\prime } x&=\left (1+x -6 y^{2}\right ) y \\ \end{align*}

[_rational, _Bernoulli]

2.016

4855

\begin{align*} 2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y}&=0 \\ \end{align*}

[_separable]

8.408

4856

\begin{align*} 2 y^{\prime } x +4 y+a -\sqrt {a^{2}-4 b -4 c y}&=0 \\ \end{align*}

[_separable]

8.236

4857

\begin{align*} \left (1-2 x \right ) y^{\prime }&=16+32 x -6 y \\ \end{align*}

[_linear]

3.803

4858

\begin{align*} \left (2 x +1\right ) y^{\prime }&=4 \,{\mathrm e}^{-y}-2 \\ \end{align*}

[_separable]

4.266

4859

\begin{align*} 2 \left (1-x \right ) y^{\prime }&=4 x \sqrt {1-x}+y \\ \end{align*}

[_linear]

3.142

4860

\begin{align*} 2 \left (x +1\right ) y^{\prime }+2 y+\left (x +1\right )^{4} y^{3}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

5.968

4861

\begin{align*} 3 y^{\prime } x&=3 x^{{2}/{3}}+\left (1-3 y\right ) y \\ \end{align*}

[_rational, _Riccati]

3.288

4862

\begin{align*} 3 y^{\prime } x&=\left (2+x y^{3}\right ) y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5.251

4863

\begin{align*} 3 y^{\prime } x&=\left (3 y^{3} \ln \left (x \right ) x +1\right ) y \\ \end{align*}

[_Bernoulli]

4.720

4864

\begin{align*} x^{2} y^{\prime }&=-y+a \\ \end{align*}

[_separable]

3.497

4865

\begin{align*} x^{2} y^{\prime }&=a +b x +c \,x^{2}+y x \\ \end{align*}

[_linear]

2.940

4866

\begin{align*} x^{2} y^{\prime }&=a +b x +c \,x^{2}-y x \\ \end{align*}

[_linear]

2.960

4867

\begin{align*} x^{2} y^{\prime }+\left (1-2 x \right ) y&=x^{2} \\ \end{align*}

[_linear]

3.849

4868

\begin{align*} x^{2} y^{\prime }&=a +b x y \\ \end{align*}

[_linear]

3.970

4869

\begin{align*} x^{2} y^{\prime }&=\left (b x +a \right ) y \\ \end{align*}

[_separable]

3.904

4870

\begin{align*} x^{2} y^{\prime }+x \left (2+x \right ) y&=x \left (1-{\mathrm e}^{-2 x}\right )-2 \\ \end{align*}

[_linear]

3.286

4871

\begin{align*} x^{2} y^{\prime }+2 x \left (1-x \right ) y&={\mathrm e}^{x} \left (2 \,{\mathrm e}^{x}-1\right ) \\ \end{align*}

[_linear]

3.442

4872

\begin{align*} x^{2} y^{\prime }+x^{2}+y x +y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5.111

4873

\begin{align*} x^{2} y^{\prime }&=\left (1+2 x -y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _Riccati]

6.839

4874

\begin{align*} x^{2} y^{\prime }&=a +b y^{2} \\ \end{align*}

[_separable]

4.404

4875

\begin{align*} x^{2} y^{\prime }&=\left (x +a y\right ) y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.850

4876

\begin{align*} x^{2} y^{\prime }&=\left (a x +b y\right ) y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

42.598

4877

\begin{align*} x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

62.256

4878

\begin{align*} x^{2} y^{\prime }&=a +b \,x^{n}+y^{2} x^{2} \\ \end{align*}

[_rational, _Riccati]

0.389

4879

\begin{align*} x^{2} y^{\prime }+2+x y \left (4+y x \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5.807

4880

\begin{align*} x^{2} y^{\prime }+2+a x \left (-y x +1\right )-y^{2} x^{2}&=0 \\ \end{align*}

[_rational, _Riccati]

3.713

4881

\begin{align*} x^{2} y^{\prime }&=a +b \,x^{2} y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

6.015

4882

\begin{align*} x^{2} y^{\prime }&=a +b \,x^{n}+c \,x^{2} y^{2} \\ \end{align*}

[_rational, _Riccati]

88.596

4883

\begin{align*} x^{2} y^{\prime }&=a +b x y+c \,x^{2} y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4.303

4884

\begin{align*} x^{2} y^{\prime }&=a +b x y+c \,x^{4} y^{2} \\ \end{align*}

[_rational, _Riccati]

1.259

4885

\begin{align*} x^{2} y^{\prime }+\left (x^{2}+y^{2}-x \right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.621

4886

\begin{align*} x^{2} y^{\prime }&=2 y \left (x -y^{2}\right ) \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.618

4887

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}-a y^{3} \\ \end{align*}

[_rational, _Abel]

2.274

4888

\begin{align*} x^{2} y^{\prime }+a y^{2}+b \,x^{2} y^{3}&=0 \\ \end{align*}

[_rational, _Abel]

3.131

4889

\begin{align*} x^{2} y^{\prime }&=\left (a x +y^{3} b \right ) y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.315

4890

\begin{align*} x^{2} y^{\prime }+y x +\sqrt {y}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6.095

4891

\begin{align*} x^{2} y^{\prime }&=\sec \left (y\right )+3 x \tan \left (y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

19.966

4892

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=1-x^{2}+y \\ \end{align*}

[_linear]

1.516

4893

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+1&=y x \\ \end{align*}

[_linear]

1.307

4894

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-1&=y x \\ \end{align*}

[_linear]

1.297

4895

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=5-y x \\ \end{align*}

[_linear]

4.532

4896

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+a +y x&=0 \\ \end{align*}

[_linear]

1.369

4897

\begin{align*} \left (x^{2}+1\right ) y^{\prime }-a +y x&=0 \\ \end{align*}

[_linear]

1.342

4898

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+a -y x&=0 \\ \end{align*}

[_linear]

4.098

4899

\begin{align*} \left (x^{2}+1\right ) y^{\prime }-a -y x&=0 \\ \end{align*}

[_linear]

3.029

4900

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+a -y x&=0 \\ \end{align*}

[_linear]

1.364