2.2.48 Problems 4701 to 4800

Table 2.109: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

4701

\begin{align*} y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right )&=0 \\ \end{align*}

[_separable]

4.470

4702

\begin{align*} y^{\prime }&=\left (\tan \left (x \right )+y^{3} \sec \left (x \right )\right ) y \\ \end{align*}

[_Bernoulli]

2.608

4703

\begin{align*} y^{\prime }&=a \,x^{\frac {n}{1-n}}+b y^{n} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Chini]

9.194

4704

\begin{align*} y^{\prime }&=f \left (x \right ) y+g \left (x \right ) y^{k} \\ \end{align*}

[_Bernoulli]

2.418

4705

\begin{align*} y^{\prime }&=f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \\ \end{align*}

[_Chini]

1.472

4706

\begin{align*} y^{\prime }&=\sqrt {{| y|}} \\ \end{align*}

[_quadrature]

2.752

4707

\begin{align*} y^{\prime }&=a +b y+\sqrt {A +B y} \\ \end{align*}

[_quadrature]

62.179

4708

\begin{align*} y^{\prime }&=a +b y-\sqrt {A +B y} \\ \end{align*}

[_quadrature]

59.905

4709

\begin{align*} y^{\prime }&=a x +b \sqrt {y} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Chini]

8.402

4710

\begin{align*} y^{\prime }+x^{3}&=x \sqrt {x^{4}+4 y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

4.951

4711

\begin{align*} y^{\prime }+2 y \left (1-x \sqrt {y}\right )&=0 \\ \end{align*}

[_Bernoulli]

1.593

4712

\begin{align*} y^{\prime }&=\sqrt {a +b y^{2}} \\ \end{align*}

[_quadrature]

2.650

4713

\begin{align*} y^{\prime }&=y \sqrt {a +b y} \\ \end{align*}

[_quadrature]

29.816

4714

\begin{align*} y^{\prime }&=\cos \left (y\right ) \cos \left (x \right )^{2} \\ \end{align*}

[_separable]

2.649

4715

\begin{align*} y^{\prime }&=\sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \\ \end{align*}

[_separable]

2.329

4716

\begin{align*} y^{\prime }&=a +b \cos \left (A x +B y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.465

4717

\begin{align*} y^{\prime }&=a +b \cos \left (y\right ) \\ \end{align*}

[_quadrature]

18.107

4718

\begin{align*} y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

6.671

4719

\begin{align*} y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2}&=0 \\ \end{align*}

[_separable]

2.247

4720

\begin{align*} y^{\prime }&=\cot \left (x \right ) \cot \left (y\right ) \\ \end{align*}

[_separable]

2.948

4721

\begin{align*} y^{\prime }+\cot \left (x \right ) \cot \left (y\right )&=0 \\ \end{align*}

[_separable]

2.421

4722

\begin{align*} y^{\prime }&=\sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \\ \end{align*}

[_separable]

4.256

4723

\begin{align*} y^{\prime }&=\tan \left (x \right ) \cot \left (y\right ) \\ \end{align*}

[_separable]

1.643

4724

\begin{align*} y^{\prime }+\tan \left (x \right ) \cot \left (y\right )&=0 \\ \end{align*}

[_separable]

1.704

4725

\begin{align*} y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right )&=0 \\ \end{align*}

[_separable]

1.852

4726

\begin{align*} y^{\prime }&=\tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

7.500

4727

\begin{align*} y^{\prime }&=\cos \left (x \right ) \sec \left (y\right )^{2} \\ \end{align*}

[_separable]

1.668

4728

\begin{align*} y^{\prime }&=\sec \left (x \right )^{2} \sec \left (y\right )^{3} \\ \end{align*}

[_separable]

1.838

4729

\begin{align*} y^{\prime }&=a +b \sin \left (y\right ) \\ \end{align*}

[_quadrature]

15.710

4730

\begin{align*} y^{\prime }&=a +b \sin \left (A x +B y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.506

4731

\begin{align*} y^{\prime }&=\left (1+\cos \left (x \right ) \sin \left (y\right )\right ) \tan \left (y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

6.652

4732

\begin{align*} y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right )&=0 \\ \end{align*}

[_separable]

3.477

4733

\begin{align*} y^{\prime }&=\sqrt {a +b \cos \left (y\right )} \\ \end{align*}

[_quadrature]

6.635

4734

\begin{align*} y^{\prime }&={\mathrm e}^{y}+x \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.355

4735

\begin{align*} y^{\prime }&={\mathrm e}^{x +y} \\ \end{align*}

[_separable]

1.149

4736

\begin{align*} y^{\prime }&={\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \\ \end{align*}

[_separable]

2.179

4737

\begin{align*} y \ln \left (x \right ) \ln \left (y\right )+y^{\prime }&=0 \\ \end{align*}

[_separable]

1.780

4738

\begin{align*} y^{\prime }&=x^{m -1} y^{1-n} f \left (a \,x^{m}+b y^{n}\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.424

4739

\begin{align*} y^{\prime }&=a f \left (y\right ) \\ \end{align*}

[_quadrature]

0.485

4740

\begin{align*} y^{\prime }&=f \left (a +b x +c y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.776

4741

\begin{align*} y^{\prime }&=f \left (x \right ) g \left (y\right ) \\ \end{align*}

[_separable]

1.404

4742

\begin{align*} y^{\prime }&=\sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \\ \end{align*}

[_linear]

1.808

4743

\begin{align*} 2 y^{\prime }+2 \csc \left (x \right )^{2}&=y \csc \left (x \right ) \sec \left (x \right )-y^{2} \sec \left (x \right )^{2} \\ \end{align*}

[_Riccati]

1.714

4744

\begin{align*} 2 y^{\prime }&=2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

65.720

4745

\begin{align*} 2 y^{\prime }+a x&=\sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

44.829

4746

\begin{align*} 2 y^{\prime }+a x&=-\sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

43.662

4747

\begin{align*} 3 y^{\prime }&=x +\sqrt {x^{2}-3 y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

7.009

4748

\begin{align*} 3 y^{\prime }&=x -\sqrt {x^{2}-3 y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

7.111

4749

\begin{align*} y^{\prime } x&=\sqrt {a^{2}-x^{2}} \\ \end{align*}

[_quadrature]

0.435

4750

\begin{align*} y^{\prime } x&=-\sqrt {a^{2}-x^{2}} \\ \end{align*}

[_quadrature]

0.261

4751

\begin{align*} y^{\prime } x +x +y&=0 \\ \end{align*}

[_linear]

2.199

4752

\begin{align*} y^{\prime } x +x^{2}-y&=0 \\ \end{align*}

[_linear]

0.979

4753

\begin{align*} y^{\prime } x&=x^{3}-y \\ \end{align*}

[_linear]

1.651

4754

\begin{align*} y^{\prime } x&=1+x^{3}+y \\ \end{align*}

[_linear]

1.353

4755

\begin{align*} y^{\prime } x&=x^{m}+y \\ \end{align*}

[_linear]

1.570

4756

\begin{align*} y^{\prime } x&=x \sin \left (x \right )-y \\ \end{align*}

[_linear]

1.498

4757

\begin{align*} y^{\prime } x&=x^{2} \sin \left (x \right )+y \\ \end{align*}

[_linear]

1.974

4758

\begin{align*} y^{\prime } x&=x^{n} \ln \left (x \right )-y \\ \end{align*}

[_linear]

1.536

4759

\begin{align*} y^{\prime } x&=\sin \left (x \right )-2 y \\ \end{align*}

[_linear]

1.685

4760

\begin{align*} y^{\prime } x&=a y \\ \end{align*}

[_separable]

1.877

4761

\begin{align*} y^{\prime } x&=-a y \\ \end{align*}

[_separable]

1.826

4762

\begin{align*} y^{\prime } x&=1+x +a y \\ \end{align*}

[_linear]

2.104

4763

\begin{align*} y^{\prime } x&=a x +b y \\ \end{align*}

[_linear]

2.550

4764

\begin{align*} y^{\prime } x&=a \,x^{2}+b y \\ \end{align*}

[_linear]

1.992

4765

\begin{align*} y^{\prime } x&=a +b \,x^{n}+c y \\ \end{align*}

[_linear]

2.178

4766

\begin{align*} y^{\prime } x +2+\left (-x +3\right ) y&=0 \\ \end{align*}

[_linear]

1.305

4767

\begin{align*} y^{\prime } x +x +\left (a x +2\right ) y&=0 \\ \end{align*}

[_linear]

1.335

4768

\begin{align*} y^{\prime } x +\left (b x +a \right ) y&=0 \\ \end{align*}

[_separable]

1.128

4769

\begin{align*} y^{\prime } x&=x^{3}+\left (-2 x^{2}+1\right ) y \\ \end{align*}

[_linear]

1.753

4770

\begin{align*} y^{\prime } x&=a x -\left (-b \,x^{2}+1\right ) y \\ \end{align*}

[_linear]

1.473

4771

\begin{align*} y^{\prime } x +\left (-a \,x^{2}+2\right ) y&=0 \\ \end{align*}

[_separable]

1.833

4772

\begin{align*} y^{\prime } x +x^{2}+y^{2}&=0 \\ \end{align*}

[_rational, _Riccati]

2.185

4773

\begin{align*} y^{\prime } x&=x^{2}+y \left (1+y\right ) \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.198

4774

\begin{align*} y^{\prime } x -y+y^{2}&=x^{{2}/{3}} \\ \end{align*}

[_rational, _Riccati]

50.119

4775

\begin{align*} y^{\prime } x&=a +b y^{2} \\ \end{align*}

[_separable]

2.344

4776

\begin{align*} y^{\prime } x&=a \,x^{2}+y+b y^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

0.803

4777

\begin{align*} y^{\prime } x&=a \,x^{2 n}+\left (n +b y\right ) y \\ \end{align*}

[_rational, _Riccati]

2.368

4778

\begin{align*} y^{\prime } x&=a \,x^{n}+b y+c y^{2} \\ \end{align*}

[_rational, _Riccati]

28.151

4779

\begin{align*} y^{\prime } x&=k +a \,x^{n}+b y+c y^{2} \\ \end{align*}

[_rational, _Riccati]

7.213

4780

\begin{align*} y^{\prime } x +a +x y^{2}&=0 \\ \end{align*}

[_rational, [_Riccati, _special]]

2.513

4781

\begin{align*} y^{\prime } x +\left (-y x +1\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.999

4782

\begin{align*} y^{\prime } x&=\left (-y x +1\right ) y \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.455

4783

\begin{align*} y^{\prime } x&=\left (y x +1\right ) y \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.495

4784

\begin{align*} y^{\prime } x&=a \,x^{3} \left (-y x +1\right ) y \\ \end{align*}

[_Bernoulli]

1.800

4785

\begin{align*} y^{\prime } x&=x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.539

4786

\begin{align*} y^{\prime } x&=y \left (2 y x +1\right ) \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.476

4787

\begin{align*} y^{\prime } x +b x +\left (2+a x y\right ) y&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.650

4788

\begin{align*} y^{\prime } x +a_{0} +a_{1} x +\left (a_{2} +a_{3} x y\right ) y&=0 \\ \end{align*}

[_rational, _Riccati]

33.851

4789

\begin{align*} y^{\prime } x +a \,x^{2} y^{2}+2 y&=b \\ \end{align*}

[_rational, _Riccati]

28.418

4790

\begin{align*} y^{\prime } x +x^{m}+\frac {\left (n -m \right ) y}{2}+x^{n} y^{2}&=0 \\ \end{align*}

[_rational, _Riccati]

2.897

4791

\begin{align*} y^{\prime } x +\left (a +b \,x^{n} y\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.715

4792

\begin{align*} y^{\prime } x&=a \,x^{m}-b y-c \,x^{n} y^{2} \\ \end{align*}

[_rational, _Riccati]

0.842

4793

\begin{align*} y^{\prime } x&=2 x -y+a \,x^{n} \left (x -y\right )^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

4.925

4794

\begin{align*} y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y&=0 \\ \end{align*}

[_Bernoulli]

3.384

4795

\begin{align*} y^{\prime } x&=y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

3.040

4796

\begin{align*} y^{\prime } x&=y \left (1+y^{2}\right ) \\ \end{align*}

[_separable]

3.606

4797

\begin{align*} y^{\prime } x +y \left (1-x y^{2}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.637

4798

\begin{align*} y^{\prime } x +y&=a \left (x^{2}+1\right ) y^{3} \\ \end{align*}

[_rational, _Bernoulli]

4.020

4799

\begin{align*} y^{\prime } x +y&=a \left (-x^{2}+1\right ) y^{3} \\ \end{align*}

[_rational, _Bernoulli]

3.933

4800

\begin{align*} y^{\prime } x&=a y+b \left (x^{2}+1\right ) y^{3} \\ \end{align*}

[_rational, _Bernoulli]

4.860