2.4.25 first order nonlinear p but separable

Table 2.1099: first order nonlinear p but separable [39]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

5371

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.992

5372

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.328

5373

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.931

5374

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.275

5375

\begin{align*} {y^{\prime }}^{2}&=f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2} \\ \end{align*}

[_separable]

2.175

5449

\begin{align*} x {y^{\prime }}^{2}&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.191

5480

\begin{align*} \left (x +1\right ) {y^{\prime }}^{2}&=y \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

1.829

5498

\begin{align*} x^{2} {y^{\prime }}^{2}+y^{2}-y^{4}&=0 \\ \end{align*}

[_separable]

2.100

5517

\begin{align*} \left (-x^{2}+1\right ) {y^{\prime }}^{2}&=1-y^{2} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

0.647

5538

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y x -y&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

0.863

5610

\begin{align*} {y^{\prime }}^{3}&=\left (a +b y+c y^{2}\right ) f \left (x \right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.313

5612

\begin{align*} {y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.096

5613

\begin{align*} {y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.654

5668

\begin{align*} {y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.197

5669

\begin{align*} {y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.214

5670

\begin{align*} {y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.198

10030

\begin{align*} y&=x {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.120

10309

\begin{align*} {y^{\prime }}^{2}&=\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.096

10310

\begin{align*} {y^{\prime }}^{2}&=\frac {y^{2}}{x} \\ \end{align*}

[_separable]

1.423

10311

\begin{align*} {y^{\prime }}^{2}&=\frac {y^{3}}{x} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.787

10312

\begin{align*} {y^{\prime }}^{3}&=\frac {y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

7.121

10313

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{y x} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.382

10314

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x y^{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.674

10315

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x^{2} y^{3}} \\ \end{align*}

[_separable]

0.750

10316

\begin{align*} {y^{\prime }}^{4}&=\frac {1}{x y^{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

5.421

10317

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{y^{4} x^{3}} \\ \end{align*}

[_separable]

0.768

11696

\begin{align*} x {y^{\prime }}^{2}-y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.691

11720

\begin{align*} x^{2} {y^{\prime }}^{2}+y^{2}-y^{4}&=0 \\ \end{align*}

[_separable]

2.655

11736

\begin{align*} {y^{\prime }}^{2} \left (x^{2}-1\right )-y^{2}+1&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.224

11805

\begin{align*} {y^{\prime }}^{3}-f \left (x \right ) \left (a y^{2}+b y+c \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.810

11838

\begin{align*} {y^{\prime }}^{n}-f \left (x \right ) g \left (y\right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.342

14073

\begin{align*} y&=\left (x +1\right ) {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.705

15134

\begin{align*} \sinh \left (x \right ) {y^{\prime }}^{2}+3 y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

26.590

15504

\begin{align*} {y^{\prime }}^{2}-9 y x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.238

17995

\begin{align*} {y^{\prime }}^{3}+\left (2+x \right ) {\mathrm e}^{y}&=0 \\ \end{align*}

[[_1st_order, _with_exponential_symmetries]]

58.571

20734

\begin{align*} \left (-x^{2}+1\right ) {y^{\prime }}^{2}&=1-y^{2} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.055

21096

\begin{align*} {x^{\prime }}^{2}-t x+x&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.306

21873

\begin{align*} x {y^{\prime }}^{2}&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19.283

23252

\begin{align*} {\mathrm e}^{x} {y^{\prime }}^{2}+3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.077